MA 5628-01: Numerical Ordinary Differential Equations Fall 2004

Class: MWF 15:05 - 15:55, 327B Fisher Hall
Instructor: Dr. Kathleen Feigl
Office: 311 Fisher Hall
Phone: 487-2221
E-mail: feigl@mtu.edu
Web: http://www.math.mtu.edu/~feigl

Office Hours: MWF 4 - 5 pm, and by appointment

Prerequisites: Introduction of ODE, basic linear algebra, or consent of instructor

Additional References: 1. Computational Methods in Ordinary Differential Equations
2. Numerical Solution of Ordinary Differential Equations

Contents: This course discusses the principles and applications of numerical methods to solve ordinary differential equations. Topics to be covered include:

- Solution methods for initial value problems (IVP):
 - Basic implicit and explicit solution methods (e.g. Euler, trapezoid)
 - One-step methods (e.g. Taylor series methods, Runge-Kutta methods)
 - Linear multistep methods (Adams methods, predictor-corrector methods)

- Solution methods for boundary value problems (BVP):
 - Shooting methods
 - Finite difference methods

- Stability, convergence, accuracy and consistency of these methods

- Stiffness of IVP and BVP

Homework: Homework and computer projects will be assigned and collected. (60% of grade)

Final Exam: There will be a final exam. (40% of grade)

Class Policies: - Attendance in class is mandatory.
 - Students are expected to hand in homework assignments and computer projects on time.

Notice: MTU complies with all federal and state laws and regulations regarding discrimination, including the ADA Act of 1990. If you have a disability and a need, reasonable accommodation for equal access to education or services can be made through the Dean of Students Office (Gloria Melton 487-2212). For concerns regarding discrimination of any kind, please contact your advisor, department head, or affirmative actions office.