Section 16.5: Integrals in Cylindrical Coordinates

Sketch the region of integration and use cylindrical coordinates to evaluate the integral

$$
\int_{W} f d V
$$

where f and W are given by
a. $f(x, y, z)=z \sqrt{x^{2}+y^{2}}$ and W is the hemisphere of radius 2 described by $x^{2}+y^{2}+z^{2} \leq 4, \quad z \geq 0$.
(Answer: $\frac{64 \pi}{15}$)
b. $f(x, y, z)=\sqrt{x^{2}+y^{2}}$ and W is bounded by $z=\sqrt{x^{2}+y^{2}}, z=0$, and $x^{2}+y^{2}=1$.

Section 16.5: Integrals in Spherical Coordinates

Sketch the region of integration and use spherical coordinates to evaluate the integral

$$
\int_{W} f d V
$$

where f and W are given by

1. $f(x, y, z)=z^{2}$
W is the quarter sphere of radius 1 described by $x^{2}+y^{2}+z^{2} \leq 1, \quad y \geq 0, \quad z \geq 0$.
(Answer: $\frac{\pi}{15}$)
2. $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$
W is the region above the cone $z=-\sqrt{3 x^{2}+3 y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$.
