Section 16.5: Integrals in Cylindrical Coordinates

Sketch the region of integration and use cylindrical coordinates to evaluate the integral

$$\int_W f dV,$$

where f and W are given by

a. $f(x, y, z) = z\sqrt{x^2 + y^2}$ and W is the hemisphere of radius 2 described by $x^2 + y^2 + z^2 \le 4$, $z \ge 0$.

(Answer: $\frac{64\pi}{15}$)

b. $f(x, y, z) = \sqrt{x^2 + y^2}$ and W is bounded by $z = \sqrt{x^2 + y^2}$, z = 0, and $x^2 + y^2 = 1$.

Section 16.5: Integrals in Spherical Coordinates

Sketch the region of integration and use spherical coordinates to evaluate the integral

 $\int_W f dV,$

where f and W are given by

1. $f(x, y, z) = z^2$ W is the quarter sphere of radius 1 described by $x^2 + y^2 + z^2 \le 1$, $y \ge 0$, $z \ge 0$.

(Answer: $\frac{\pi}{15}$)

2. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ W is the region above the cone $z = -\sqrt{3x^2 + 3y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 4$.