Lecture: Section 18.3

Gradient Field and Path Independent Fields

For this section we will follow the treatment by Professor Paul Dawkins (see http://tutorial.math.lamar.edu) more closely than our text. A link to this tutorial is on the course webpage.

Recall from Calc I, the Fundamental Theorem of Calculus.

\[\int_{a}^{b} F'(x)\,dx = F(b) - F(a) \]

There is, in fact, a Fundamental Theorem for line Integrals over certain kinds of vector fields.

Note that in the case above, the integrand contains \(F'(x) \), which is a derivative. The multivariable analogy is the gradient. We state below the Fundamental Theorem for line integrals without proof.

\[\int_{c} \vec{V} f \cdot d\vec{r} = f(Q) - f(P) \]

Where \(P \) and \(Q \) are the endpoints of the path \(c \).

A logical question to ask at this point is what does this have to do with the material we studied in sections 18.1 and 18.2?

- First, remember that \(\vec{V} f \) is a vector field, i.e., the direction/magnitude of the maximum change of \(f \).

- So, if we had a vector field \(\vec{F} \) which we know was a gradient field of some function \(f \), we would have an easy way of finding the line integral, i.e., simply evaluate the function \(f \) at the endpoints of the path \(c \).

\[\rightarrow \text{The problem is that not all vector fields are gradient fields.} \]

So we will need two skills in order to effectively use the Fundamental Theorem for line integrals fully.
1. Know how to determine whether a vector field is a gradient field. If it is, it is called a \textit{conservative} vector field. For such a field, there is a function \(f \) such that
\[\vec{F} = \nabla f. \]

2. If we determine that \(\vec{F} \) is a conservative vector field, how do we find \(f \)? Note, \(f \) is called a \textit{potential} function.

\textbf{Ramifications of a conservative field:}

If \(\vec{F} = \nabla f \),

1. Then \(\int_c \vec{F} \cdot d\vec{r} = \int_c \nabla f \cdot d\vec{r} = f(Q) - f(P) \)

\begin{align*}
\int_{c_1} \vec{F} \cdot d\vec{r} &= \int_{c_2} \vec{F} \cdot d\vec{r} \\
\Rightarrow \int_{c_1} \vec{F} \cdot d\vec{r} &= \int_{c_2} \vec{F} \cdot d\vec{r}
\end{align*}

This implies:

\[\int_{c_1} \vec{F} \cdot d\vec{r} = \int_{c_2} \vec{F} \cdot d\vec{r} \]

Which means that the line integral is path-independent.

2. Another important ramification occurs when the path \(c \) is closed. Then,

\[\oint_c \vec{F} \cdot d\vec{r} = \oint_c \nabla f \cdot d\vec{r} = f(Q) - f(P) \]
But if \(P = Q \), then:

\[
\oint_C \nabla f \cdot d\mathbf{r} = f(P) - f(P) = 0
\]

Test for a Conservative Vector Field

Theorem: Let \(\vec{F} = F_1 \hat{i} + F_2 \hat{j} \) be a vector field on an open region \(R \). Then, if \(F_1 \) and \(F_2 \) have continuous first order partial derivatives such that

\[
\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}
\]

(Test for a conservative vector field)

then \(\vec{F} \) is a conservative vector field.

The basis for this test is easy to show. We know that if we have a \(\vec{F} \) is a gradient vector field then \(F_1 \) and \(F_2 \) in the equation above are equal to \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \), respectively, where \(f \) is the potential function. Accordingly,

\[
\frac{\partial F_1}{\partial y} = \frac{\partial^2 f}{\partial x \partial y} \quad \text{and} \quad \frac{\partial F_2}{\partial x} = \frac{\partial^2 f}{\partial y \partial x}
\]

But, we know that the two mixed second derivatives are equal to each other, and the basis for the test is clear.

Example: Exercise 18.3.4

Decide whether the following vector field could be a gradient field (i.e., is it conservative?).

\[
\vec{F}(x, y) = (x^2 - y^2)\hat{i} - 2xy\hat{j}
\]

\[
F_1 = x^2 - y^2 \quad F_2 = -2xy
\]

\[
\frac{\partial F_1}{\partial y} = -2y = \frac{\partial F_2}{\partial x} = -2y
\]

So we would conclude that \(G(x, y) \) is, in fact, conservative.
How to Determine f for a Conservative Vector Field, \vec{F}

For the case above, we know now that:

$$\vec{F}(x, y) = \vec{\nabla}f = (x^2 - y^2)\hat{i} - 2xy\hat{j}$$

The question now is to find f.

Well, we know from the definition of the gradient,

$$\vec{\nabla}f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j}$$

So then,

$$\frac{\partial f}{\partial x} = F_1 = x^2 - y^2 \quad \text{and} \quad \frac{\partial f}{\partial y} = F_2 = -2xy$$

We could integrate these functions, in a special way, to find f.

$$f = \int (x^2 - y^2)\,dx = \int (-2xy)\,dy$$

Let’s take the first case:

$$\int (x^2 - y^2)\,dx = \frac{x^3}{3} - y^2x + h(y) = f$$

Note we treat y as a constant, and as such, our constant of integration may, in fact, be a function of y.

Now, if we differentiate this expression with respect to y, see what happens.

$$\frac{\partial f}{\partial y} = -2yx + h’y$$

Which we know must equal F_2 since \vec{F} is a gradient field. Therefore:

$$-2xy + h’y = F_2 = -2xy$$

So $h’(y) = 0$ and $h(y) = c$. Thus $f = \frac{x^3}{3} - y^2x + c$. Note that since we calculate $f(x,y)$ to be used in The Fundamental Theorem of Line Integrals, the c value will cancel in subsequent calculations. This will be shown in the following example.
Application

Find $\int_c \vec{F} \cdot d\vec{r}$ along a parabolic path from (0, 0) to (2, 4). Well we know that the field is conservative and path independent (so no need to parameterize). Moreover, we know;

if. $\vec{F}(x,y) = (x^2 - y^2)\hat{i} - 2xy\hat{j}$ then $f = \frac{x^3}{3} - y^2x + c$; So,

$$\int_c \vec{F} \cdot d\vec{r} = f(2,4) - f(0,0) = \left[\frac{8}{3} - 32 + c\right] - [c] = \frac{-88}{3}$$

Three Dimensional Case

We don’t have a method yet to determine whether a 3-D vector field is conservative. We’ll get that in Section 18.4. But if we know we have a gradient field, we can find f.

Example: Exercise 18.3.12

Find $\int_c \vec{F} \cdot d\vec{r}$, $\vec{F} = 2x\hat{i} - 4y\hat{j} + (2z - 3)\hat{k}$, with C between (1, 1, 1) and (2, 3, -1)

$$\frac{\partial f}{\partial x} = 2x \quad \frac{\partial f}{\partial y} = -4y \quad \frac{\partial f}{\partial z} = (2z - 3)$$

We are lucky in that each of the partials are functions of a single variable.

$$f = \int 2x \, dx = x^2 + g(y,z)$$

$$\frac{\partial f}{\partial y} = g_y(y,z) = -4y$$

$$g_y(y,z) = \int -4y \, dy = -2y^2 + h(z)$$

$$F = x^2 - 2y^2 + h(z)$$

$$\frac{\partial f}{\partial z} = h'(z) = 2z - 3$$

$$h = z^2 - 3z + c$$

$$f = x^2 - 2y^2 + z^2 - 3z + c$$

$$\int_c \vec{F} \cdot d\vec{r} = f(2,3,-1) - f(1,1,1) = 4 - 18 + 1 + 3 + c - (1 - 2 + 1 - 3 + c) = -10 - (-3) = 7$$