1. Match the name of the surface with a plausible equation.

 a. (2 pts) $z = y^2$, x free to vary i. circular cylinder
 b. (2 pts) $x^2 + \frac{y^2}{4} + z^2 = 9$ ii. hyperbolic paraboloid
 c. (2 pts) $x^2 + y^2 = 4$, z free to vary iii. paraboloid
 d. (2 pts) $z = -\sqrt{x^2 + y^2}$ iv. single cone
 v. parabolic cylinder v. sphere
 vi. sphere vii. ellipsoid

2. (5 pts) Write a linear function with the given points.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>300</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

3. (5 pts) (Sketch the level surface of the function $g(x, y, z) = x^2 + y^2 + z$ when g is set equal to the constant 1.)

(OVER)
4. Given the plane \(z - 5(x-2) = 3(5-y) \).

\[\hat{n} = \] a. (3 pts) Find the normal vector to the plane.

b. (4 pts) Graph the plane on the given axes and indicate the values of the x-, y-, and z-intercepts.

5. Let \(\hat{v} = 2\hat{i} - 3\hat{j} - \hat{k} \) and \(\hat{w} = 5\hat{i} + 3\hat{j} - \hat{k} \).

\[\] a. (3 pts) Find \(\hat{v} \cdot \hat{w} \).

\[\] b. (2 pts) Are the two vectors parallel, perpendicular or neither?

c. (3 pts) Find \(\hat{v} \times \hat{w} \). Calculators can be used only for checking.

d. (2 pts) Find \(\tan\theta \) where \(\theta \) is the angle between \(\hat{v} \) and \(\hat{w} \).
6. Find the following partial derivatives.

a. (4 pts) \(z_x \) if \(z = (3xy + 2x)^5 \)

b. (4 pts) \(\frac{\partial f}{\partial y} \) if \(f(x,y) = e^{2xy} \)

c. (4 pts) \(\frac{\partial f}{\partial x} \bigg|_{\left(\frac{\pi}{3},1\right)} \) if \(f(x, y) = \frac{\sin xy}{y} \)

d. (4 pts) \(g_{xy} \) if \(g(x,y) = 3x^2 + 2x \ln y \)

7. Let \(f(x,y) = x^2 + y^3 \)

a. (4 pts) Find the local linearization of \(f(x,y) \) at the point \((1,2)\).

b. (2 pts) Estimate \(f(1.04, 1.98) \) using the linearization.
8. Let \(f(x,y) = x^2 + \ln y \) and let point \(P = (3,1) \).

a. (4 pts) Find \(\nabla f \) at the point \(P \).

b. (2 pts) In what direction from the point \(P \) is \(f \) increasing the fastest?

c. (4 pts) Find the directional derivative of \(f \) at the point \(P \) in the direction of \(\hat{u} = \frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j} \).

9. Let \(w = f(x,y,z) = x^2 + 2y + z \) where \(x = u^2 + v^2 \), \(y = u^2 v^2 \) and \(z = u \).

a. (3 pts) Draw a tree diagram to the right expressing the relationships between the variables.

b. (4 pts) Find \(\frac{\partial f}{\partial v} \).
10. Use the level curve of the function $z = f(x, y)$ to decide the sign (+, -, 0) of each of the following partial derivatives.

__________ a. (2 pts) f_x

__________ b. (2 pts) f_{xx}

__________ c. (2 pts) f_y

__________ d. (2 pts) f_{yy}

11. (6 pts) Find the critical points of the function $f(x, y) = x^3 + y^2 - 3xy$ and classify each as a local max, a local min, a saddle point or none of these.

<table>
<thead>
<tr>
<th>Critical Points</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x, y) = (,)$</td>
<td></td>
</tr>
<tr>
<td>$(x, y) = (,)$</td>
<td></td>
</tr>
</tbody>
</table>

(OVER)
12. Given the contour diagram to the right. Identify each labeled point as a local minimum, a local maximum, a saddle point or none of these.

a. (2 pts) point A
b. (2 pts) point B
c. (2 pts) point C

13. (6 pts) Use the method of Lagrange multipliers to find the maximum value of the function

\[f(x, y) = -3x^2 - 2y^2 \]

subject to the constraint that \(x \) and \(y \) lie on the parabola

\[y - x^2 = -2. \]

max value of \(f = \) \[\] and occurs at \((x, y) = (\) \[\), \[) \]