Difference Systems of Sets and Cyclotomy

Yukiyasu Mutoha,1

aGraduate School of Information Science, Nagoya University, Nagoya, Aichi 464-8601, Japan, yukiyasu@jim.math.cm.is.nagoya-u.ac.jp

Vladimir D. Tonchevb,*,2

bDepartment of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931, USA, tonchev@mtu.edu

Abstract

Difference Systems of Sets (DSS) are combinatorial configurations that arise in connection with code synchronization. A method for the construction of DSS from partitions of cyclic difference sets was introduced in [6] and applied to cyclic difference sets \((n, (n-1)/2, (n-3)/4)\) of Paley type, where \(n \equiv 3 \pmod{4}\) is a prime number. This paper develops similar constructions for prime numbers \(n \equiv 1 \pmod{4}\) that use partitions of the set of quadratic residues, as well as more general cyclotomic classes.

Key words: difference set, cyclotomic class, code synchronization

1991 MSC: 05B, 94B

1 Introduction

A Difference System of Sets (DSS) with parameters \((n, \tau_0, \ldots, \tau_{q-1}, \rho)\) is a collection of \(q\) disjoint subsets \(Q_i \subseteq \{1, 2, \ldots, n\}, |Q_i| = \tau_i, 0 \leq i \leq q-1\), such that the multi-set

\[
\{a - b \pmod{n} \mid a \in Q_i, b \in Q_j, 0 \leq i, j < q, i \neq j\}
\]

* Corresponding author
1 Research supported by JSPS Research Fellow 09978.
2 Research partially sponsored by NSF Grant CCR-0310832 and NSA Grant MDA904-03-1-0088.

Preprint submitted to Elsevier Science 14 April 2005
contains every number \(i \), \(1 \leq i \leq n-1 \) at least \(\rho \) times. A DSS is \textit{perfect} if every number \(i \), \(1 \leq i \leq n-1 \) is contained exactly \(\rho \) times in the multi-set (1). A DSS is \textit{regular} if all subsets \(\mathcal{Q}_i \) are of the same size: \(\tau_0 = \tau_1 = \ldots = \tau_{q-1} = m \).

We use the notation \((n, m, q, \rho)\) for a regular DSS on \(n \) points with \(q \) subsets of size \(m \).

Difference systems of sets were introduced by V. Levenshtein [4] (see also [5]) and were used for the construction of codes that allow for synchronization in the presence of errors. A \(q \)-ary code of length \(n \) is a subset of the set \(F_q^n \) of all vectors of length \(n \) over \(F_q = \{0, 1, \ldots, q-1\} \). If \(q \) is a prime power, we often identify \(F_q \) with a finite field of order \(q \), in which case \(i \) (\(0 < i \leq q-1 \)) stands for the \(i \)th power of a primitive element. A \(\text{linear } q\)-ary code \((q \text{ a prime power})\), is a linear subspace of \(F_q^n \). If \(x = x_1 \cdots x_n \), \(y = y_1 \cdots y_n \in F_q^n \), and \(0 \leq i \leq n-1 \), the \(i \)th \textit{joint} of \(x \) and \(y \) is defined as \(T_i(x,y) = x_{i+1}\cdots x_n y_1\cdots y_i \).

In particular, \(T_i(x,x) \) is a cyclic shift of \(x \). The \textit{comma-free index} \(\rho = \rho(C) \) of a code \(C \subseteq F_q^n \) is defined as

\[
\rho = \min \ d(z, T_i(x,y)),
\]

where the minimum is taken over all \(x, y, z \in C \) and all \(i = 1, \ldots, n-1 \), and \(d \) is the Hamming distance between vectors in \(F_q^n \). The comma-free index \(\rho(C) \) allows one to distinguish a code word from a joint of two code words (and hence provides for synchronization of code words) provided that at most \(\lfloor \rho(C)/2 \rfloor \) errors have occurred in the given code word [3].

Since the zero vector belongs to any linear code, the comma-free index of a linear code is zero. Levenshtein [4] gave the following construction of comma-free codes of index \(\rho > 0 \) obtained as cosets of linear codes, that utilizes difference systems of sets. Given a DSS \(\{\mathcal{Q}_0, \ldots, \mathcal{Q}_{q-1}\} \) with parameters \((n, \tau_0, \ldots, \tau_{q-1}, \rho)\), define a linear \(q \)-ary code \(C \subseteq F_q^n \) of dimension \(n - r \), where

\[
r = \sum_{i=0}^{q-1} |\mathcal{Q}_i|,\]

whose information positions are indexed by the numbers not contained in any of the sets \(\mathcal{Q}_0, \ldots, \mathcal{Q}_{q-1} \), and having all redundancy symbols equal to zero. Replacing in each vector \(x \in C \) the positions indexed by \(\mathcal{Q}_i \) with the symbol \(i \) (\(0 \leq i \leq q-1 \)), yields a coset \(C' \) of \(C \) that has a comma-free index at least \(\rho \).

This application of DSS to code synchronization requires that the number

\[
r = r_q(n, \rho) = \sum_{j=0}^{q-1} |\mathcal{Q}_j|\]

is as small as possible.
Levenshtein [4] proved the following lower bound on \(r_q(n, \rho) \):

\[
 r_q(n, \rho) \geq \sqrt{\frac{q\rho(n-1)}{q-1}},
\]

with equality if and only if the DSS is perfect and regular.

In [6], Tonchev introduced a method for the construction of DSS from partitions of cyclic difference sets. This method was applied to the \((n, (n-1)/2, (n-3)/4)\) difference set of Paley (or quadratic residues) type, where \(n\) is any prime congruent to 3 modulo 4. In this paper, the method from [6] is extended to primes \(n \equiv 1 \pmod{4}\) by using partitions of the set of quadratic residues modulo \(n\) (Section 2), or partitions defined by more general cyclotomic classes (Section 3). Explicit constructions of infinite series of regular DSS are given for \(2 \leq m \leq 6\) in Section 2. A general construction for arbitrary \(m\) based on cyclotomic classes is described in Section 3.

2 DSS and quadratic residues

Let \(D = \{x_1, x_2, \ldots, x_k\}\) be a \((v, k, \lambda)\) difference set (cf. [1], [2], [7]), that is, a subset of \(k\) residues modulo \(v\) such that every positive residue modulo \(v\) occurs exactly \(\lambda\) times in the multi-set of differences

\[
\{x_i - x_j \pmod{v} \mid x_i, x_j \in D, x_i \neq x_j\}.
\]

Then the collection of singletons \(Q_0 = \{x_1\}, \ldots, Q_{k-1} = \{x_k\}\) is a perfect regular DSS with parameters \((n = v, m = 1, q = k, \rho = \lambda)\).

This simple construction was generalized in [6] by replacing the collection of singletons of a given cyclic difference set by any partition such that the parts are base blocks of a cyclic 2-design. More precisely, the following statement holds.

Lemma 1 [6] Let \(D \subseteq \{1, 2, \ldots, n\}\), \(|D| = k\), be a cyclic \((n, k, \lambda)\) difference set. Let \(D\) be partitioned into \(q\) disjoint subsets \(Q_0, \ldots, Q_{q-1}\), and let \(\Delta\) be the cyclic design having as a collection of blocks the union of orbits of the base blocks \(Q_0, \ldots, Q_{q-1}\) under the cyclic group \(C_n\). Assume that every two points are contained in at most \(\lambda_1\) blocks of \(\Delta\). Then \(\{Q_i\}_{i=0}^{q-1}\) is a DSS with parameters \((n, \tau_0, \ldots, \tau_{q-1}, \rho = \lambda - \lambda_1)\), where \(\tau_i = |Q_i|, i = 0, \ldots, q-1\). The DSS \(\{Q_i\}_{i=0}^{q-1}\) is perfect if and only if \(\Delta\) is a pairwise balanced design with every two points occurring together in exactly \(\lambda_1\) blocks.

A class of new DSS were found in [6] from partitions of the \((n, (n-1)/2, (n-3)/4)\) cyclic difference set of quadratic-residue (QR) type, where \(n = 4t + 3\) is
prime. The partitions were defined by a subgroup of the multiplicative group \(\mathbb{Q}\) of order \((n - 1)/2\) consisting of all quadratic residues and its cosets in \(\mathbb{Q}\).

It is the aim of this section to present similar constructions for the case of prime numbers \(n\) of the form \(n = 4t + 1\). We use again partitions of the set \(\mathbb{Q}\) of quadratic residues modulo \(n\). The major difference between the cases \(n = 4t + 3\) or \(n = 4t + 1\) is that if \(n \equiv 3 \pmod{4}\) the set \(\mathbb{Q}\) is a cyclic difference set (with \(\lambda = (n - 3)/4 = t\)), while if \(n \equiv 1 \pmod{4}\) \(\mathbb{Q}\) is a relative difference set: the multi-set of \(2t(2t - 1)\) differences

\[\{x - y \pmod{n} \mid x, y \in \mathbb{Q}, x \neq y\}\]

contains every \(z \in \mathbb{Q}\) exactly \(t - 1\) times, and every \(z \notin \mathbb{Q}\) exactly \(t\) times. Equivalently, the cyclic 1-\((4t+1, 2t, 2t)\) design \(\mathbb{Q}^*\) consisting of the cyclic shifts of \(\mathbb{Q}\) modulo \(n\) is a partially balanced design such that any pair \(x, y \in \mathbb{Z}_n, x \neq y\) occurs in exactly \(t - 1\) blocks of \(\mathbb{Q}^*\) whenever \(x - y \in \mathbb{Q}\), and in exactly \(t\) blocks if \(x - y \notin \mathbb{Q}\).

Assume that \(|\mathbb{Q}| = mq\) (thus, \(n = 2mq + 1\)). We want to partition \(\mathbb{Q}\) into \(q\) disjoint subsets of size \(m\) that will be the blocks of a regular DSS. Let \(\alpha\) be a primitive element of the finite field of order \(n\), \(GF(n)\). Then

\[\mathbb{Q} = \{\alpha^{2i} \mid 1 \leq i \leq (n - 1)/2\}\.

Let \(D_m\) be a subgroup of \(\mathbb{Q}\) of order \(m\),

\[D_m = \{\alpha^{2qi} \mid 1 \leq i \leq m\}.

Then \(\mathbb{Q}\) is partitioned into \(q\) disjoint cosets of \(D_m\):

\[\mathbb{Q} = D_m \cup (D_m\alpha^2) \cup \ldots \cup (D_m\alpha^{2(q-1)}).

We consider the DSS having as blocks the following subsets of size \(m\):

\[Q_0 = D_m, Q_1 = D_m\alpha^2, \ldots, Q_{q-1} = D_m\alpha^{2(q-1)}.

Let \(G\) be the group of transformations \(\phi: GF(n) \rightarrow GF(n)\), where

\[\phi(x) = a^2x + b \pmod{n}; \ a, b \in GF(n), \ a \neq 0.

The group \(G\) is of order \(n(n - 1)/2\) and contains the cyclic group \(\mathbb{Z}_n\) and the multiplicative group \(\mathbb{Q}\) as subgroups. The collection of (unordered) 2-subsets of \(\mathbb{Z}_n\) is partitioned into two orbits under the action of \(G\): one orbit consists of all pairs \(\{x, y\}\) such that \(x - y \in \mathbb{Q}\), and the second orbit contains the pairs \(\{x, y\}\) such that \(x - y \notin \mathbb{Q}\).

Note that \(D_m\) is a subgroup of \(\mathbb{Q}\) of order \(m\), \(\mathbb{Q}\) acts regularly on itself, and \(n\) is prime. Thus, the stabilizer of \(D_m\) in \(G\) is of order \(m\) and the orbit \(D_m^G\) of
D_m under G consists of $|G|/m = nq$ subsets of size m. The collection $\Delta = D_m^G$ is a cyclic design with base blocks $Q_0, Q_1, \ldots, Q_{q-1}$. Since the group G has two orbits on the 2-subsets of \mathbb{Z}_n, Δ is a partially balanced design with two classes: each pair x, y such that $x - y \in Q$ occurs in λ_1 blocks of Δ (for some λ_1), while each pair x, y such that $x - y \notin Q$ occurs in λ_2 blocks (for some λ_2). It follows that the collection $\{Q_i\}_{i=0}^{q-1}$ is a DSS such that the multi-set of differences (1) contains every $z \in Q$ exactly $t - 1 - \lambda_1$ times, and every $z \notin Q$ exactly $t - \lambda_2$ times. Thus, we have the following.

Theorem 2 The collection $\{Q_i\}_{i=0}^{q-1}$ is a DSS with parameters (n, m, q, ρ), where

$$\rho = \min(t - 1 - \lambda_1, t - \lambda_2).$$

Let S_m be a subset of $GF(n)$ defined as follows:

$$S_m = \{\alpha^{2qi} - 1 \mid 1 \leq i \leq m - 1\},$$

where $m = (n - 1)/(2q)$. Then the multi-set of differences

$$\{x - y \pmod{n} \mid x, y \in D_m, x \neq y\}$$

coincides with the multi-set

$$\{s\alpha^{2qi} \pmod{n} \mid s \in S_m, 1 \leq i \leq m\}.$$

It follows that λ_1 is equal to the number of quadratic residues in S_m, while λ_2 is equal to the number of quadratic non-residues in S_m. Thus, the parameters λ_1 and λ_2 of Δ can be determined by counting the quadratic residues (resp. non-residues) in S_m. Therefore, we will often refer to λ_1, λ_2 as parameters of S_m.

Note that $\lambda_1 + \lambda_2 = m - 1$ and (3) imply the following lower bound on ρ in terms of m and q: $\rho \geq \frac{m(q - 2)}{2}$.

The next theorems utilize the construction of Theorem 2 for subgroups of relatively small order m. Applying this construction with a subgroup D_m of Q of order $m = 2$ yields the following result.

Theorem 3 Let $n = 4q + 1$ be a prime. The cosets of the subgroup $Q_0 = \langle \alpha^{2q} \rangle$ of order 2 in Q

$$Q_0 = \{\alpha^{2q} = -1, \alpha^{4q} = 1\}, \quad Q_1 = \{\alpha^{2q+2}, \alpha^2\}, \ldots, \quad Q_{q-1} = \{\alpha^{4q-2}, \alpha^{2(q-1)}\}$$

(4)
form a regular DSS with parameters \((n, 2, q, \rho)\), where

\[
\rho = \begin{cases}
q - 2 & \text{if } n \equiv 1 \pmod{8}, \\
q - 1 & \text{if } n \equiv 5 \pmod{8}.
\end{cases}
\]

(5)

Proof. The difference of the two elements of \(Q_0 = D_2 = \{\alpha^{2q} = -1, \alpha^{4q} = 1\}\) is \(\pm 2\) modulo \(n\). Since \(n \equiv 1 \pmod{4}\), \(-1 \in Q\). In addition, \(2 \in Q\) by the QRL if \(n \equiv \pm 1 \pmod{8}\), and \(2 \notin Q\) otherwise. Since \(n = 4q + 1\), then either \(n \equiv 1 \pmod{8}\) or \(n \equiv 5 \pmod{8}\). In the case when \(n \equiv 1 \pmod{8}\) the partially balanced cyclic design \(\Delta\) with base blocks (4), i.e., \(D_2\) and its cosets in \(Q\), has parameters \(\lambda_1 = 1, \lambda_2 = 0\), hence the corresponding DSS has parameter

\[
\rho = \min\{(q - 1) - 1, q - 0\} = q - 2.
\]

In the remaining case, \(n \equiv 5 \pmod{8}\), the parameters of \(\Delta\) are \(\lambda_1 = 0, \lambda_2 = 1\), and

\[
\rho = \min\{(q - 1) - 0, q - 1\} = q - 1.
\]

\(\square\)

Note 1 The DSS of Theorem 3 in the case \(n \equiv 5 \pmod{8}\) is perfect, hence optimal with respect to the Levenshtein bound (2). If \(n \equiv 1 \pmod{8}\), we have a DSS with

\[
r_q(n, \rho) = r_q(n, q - 2) = (n - 1)/2 = 2q,
\]

and the right-hand side of the inequality (2) is

\[
\sqrt{\frac{q(q - 2)(4q)}{q - 1}} = 2q\sqrt{\frac{q - 2}{q - 1}}.
\]

Thus, this DSS is asymptotically optimal.

Example 4

(a) Let \(n = 13, q = 3\). We use 2 as a primitive element of \(Z_{13}\). The DSS with \(\rho = 2\) from Theorem 3 is perfect and consists of the following three pairs \(Q_i\):

\[
\{1, 12\}, \{4, 9\}, \{3, 10\}.
\]

(b) Let \(n = 17, q = 4\). Now 3 is a primitive element of \(Z_{17}\). The DSS from Theorem 3 has \(\rho = 2\) and consists of the following four pairs \(Q_i\):

\[
\{1, 16\}, \{9, 8\}, \{13, 4\}, \{15, 2\}.
\]

Next we apply this construction by using subgroups of \(Q\) of order \(m = 3, 4, 5\) and 6.
Theorem 5 Let \(n = 6q + 1 \) be a prime, where \(q \) is an even integer. The cosets of the subgroup \(Q_0 = \langle \alpha^{2q} \rangle \) of order 3 in \(Q \)

\[
Q_0 = \{ \alpha^{2q}, \alpha^{4q}, \alpha^{6q} = 1 \}, \ Q_1 = \{ \alpha^{2q+2}, \alpha^{4q+2}, \alpha^2 \}, \ldots, \ Q_{q-1} = \{ \alpha^{4q-2}, \alpha^{6q-2}, \alpha^{2q-2} \}
\]

form a regular DSS with parameters \((n, 3, q, \rho)\), where

\[
\rho = \begin{cases}
3q/2 - 3 & \text{if } (-3)^{(n-1)/4} \equiv 1 \pmod{n}, \\
3q/2 - 2 & \text{if } (-3)^{(n-1)/4} \not\equiv 1 \pmod{n}.
\end{cases}
\] (6)

Proof. Let \(\varepsilon = \alpha^{(n-1)/3} \) be a primitive cubic root of unity in \(GF(n) \). Then \((\varepsilon - 1)^2 = -3\varepsilon \). Since \(\varepsilon \) is a fourth power, \(-3\) is a square, and \((-3)^{(n-1)/4} \equiv 1, \text{ or } -1 \pmod{n} \). In addition, \(\varepsilon - 1 \) belongs to \(Q \) if \((-3)^{(n-1)/4} \equiv 1 \pmod{n} \). Similarly, \(\varepsilon^2 - 1 \) belongs to \(Q \) if \(\varepsilon - 1 \) belongs to \(Q \). It follows that \(S_3 = \{ \varepsilon - 1, \varepsilon^2 - 1 \} \). In the case when \((-3)^{(n-1)/4} \equiv 1 \pmod{n} \), the parameters of the cyclic design \(\Delta \) are \(\lambda_1 = 2, \lambda_2 = 0 \), hence by (3)

\[
\rho = \min\{3q/2 - 1, 3q/2 - 0\} = 3q/2 - 3.
\]

In the remaining case, \((-3)^{(n-1)/4} \not\equiv 1 \pmod{n} \), the parameters of \(S_3 \) are \(\lambda_1 = 0, \lambda_2 = 2 \), and

\[
\rho = \min\{3q/2 - 1, 0, 3q/2 - 2\} = 3q/2 - 2.
\]

□

Example 6 (a) Let \(n = 13, q = 2 \). We use 2 as a primitive element of \(Z_{13} \). Then \((-3)^3 \not\equiv 1 \pmod{13} \). Thus the DSS from Theorem 5 has \(\rho = 1 \), and the two blocks are the cyclic group \(Q_0 = \{1, 3, 9\} = \langle 3 = 2^4 \rangle \simeq C_3 \) and \(Q_1 = 4Q_0 = \{4, 12, 10\} \).

(b) Let \(n = 37, q = 6 \). We use 2 as a primitive element of \(Z_{37} \). Then \((-3)^9 \equiv 1 \pmod{37} \). Thus the DSS from Theorem 5 has \(\rho = 6 \), and the six blocks \(Q_i \) are

\[
\{1, 26, 10\}, \{4, 30, 3\}, \{16, 9, 12\}, \{27, 36, 11\}, \{34, 33, 7\}, \{25, 21, 28\}.
\]

Note that \(Q_0 \) is a cyclic subgroup of \(Q \) of order 3 and the remaining blocks are the cosets of \(Q_0 \) in \(Q \).

Theorem 7 Let \(n = 8q + 1 \) be a prime. The cosets of the subgroup \(Q_0 = \langle \alpha^{2q} \rangle \) of order 4 in \(Q \)
\[Q_0 = \{ \alpha^{2q}, \alpha^{4q}, \alpha^{8q} = 1 \}, \]
\[Q_1 = \{ \alpha^{2q+2}, \alpha^{4q+2}, \alpha^{6q+2}, \alpha^2 \}, \]
\[\vdots \]
\[Q_{q-1} = \{ \alpha^{4q-2}, \alpha^{6q-2}, \alpha^{8q-2}, \alpha^{2q-2} \} \]

form a regular DSS with parameters \((n, 4, q, \rho)\), where

\[
\rho = \begin{cases}
2q - 4 & \text{if } q \text{ is even and } 2 \text{ is a biquadratic of } n, \\
q & \text{if } q \text{ is odd and } 2 \text{ is a non-biquadratic of } n, \\
2q - 2 & \text{if } q \text{ is even and } 2 \text{ is a non-biquadratic of } n, \\
q & \text{if } q \text{ is odd and } 2 \text{ is a biquadratic of } n.
\end{cases}
\]

Proof. Let \(i = \alpha^{(n-1)/4}\) be a primitive quartic root of unity in \(GF(n)\). Then \((i - 1)^2 = -2i\) and \(S_4 = \{ i - 1, -2, -i - 1 \}\) holds. Since \(n - 1 \equiv 0 \pmod{8}\), \(-1\) is a fourth power. Note that \(i\) is a fourth power if \(q\) is even. Otherwise, \(i\) is not a fourth power but a square. Thus, \(i - 1\) is a square if \(q\) is even and \(2\) is a biquadratic of \(n\), or if \(q\) is odd and \(2\) is a non-biquadratic of \(n\). In the first case, \(S_4\) has parameters \(\lambda_1 = 3, \lambda_2 = 0\), hence the corresponding DSS has parameter

\[\rho = \min\{(2q - 1) - 3, 2q - 0\} = 2q - 4. \]

In the remaining case, the parameters of \(S_4\) are \(\lambda_1 = 1, \lambda_2 = 2\), and

\[\rho = \min\{(2q - 1) - 1, 2q - 2\} = 2q - 2. \]

\[\square \]

Note 2 The DSS of Theorem 7 is perfect in the case when \(q\) is even and \(2\) is a non-biquadratic of \(n\), and when \(q\) is odd and \(2\) is a biquadratic of \(n\).

Example 8 (a) Let \(n = 17, q = 2\). We use 3 as a primitive element of \(Z_{17}\). We have \(2 \equiv 3^2 \pmod{17}\) and \(2\) is not a biquadratic of 17. Thus the DSS with \(\rho = 2\) from Theorem 7 is perfect, and the two blocks \(Q_i\) are

\[\{1, 13, 16, 4\}, \{9, 15, 8, 2\}. \]

(b) Let \(n = 73, q = 9\). Now 5 is a primitive element of \(Z_{73}\) and \(2\) is a biquadratic of 73. Thus the DSS with \(\rho = 16\) from Theorem 7 is perfect, and the nine blocks \(Q_i\) are

\[\{1, 27, 72, 46\}, \{25, 18, 48, 55\}, \{41, 12, 32, 61\}, \{3, 8, 70, 65\}, \{2, 54, 71, 19\}, \]
\[\{50, 36, 23, 37\}, \{9, 24, 64, 49\}, \{6, 16, 67, 57\}, \{4, 35, 69, 38\}. \]
(c) Let \(n = 41, \ q = 5 \). Now 6 is a primitive element of \(\mathbb{Z}_{41} \), and 2 is not a biquadratic of 41. Thus the DSS from Theorem 7 has \(\rho = 6 \), and the five blocks \(Q_i \) are
\[
\{1, 32, 40, 9\}, \{36, 4, 5, 37\}, \{25, 21, 16, 20\}, \{39, 18, 2, 23\}, \{10, 33, 31, 8\}.
\]

(d) Let \(n = 113, \ q = 14 \). Now 3 is a primitive element of \(\mathbb{Z}_{13} \), and 2 is a biquadratic of 113. Thus the DSS from Theorem 7 has \(\rho = 24 \), and the 14 blocks \(Q_i \) are
\[
\{1, 98, 112, 15\}, \{9, 91, 104, 22\}, \{81, 28, 32, 85\}, \{51, 26, 62, 87\}, \{7, 8, 106, 105\},
\{63, 72, 50, 41\}, \{2, 83, 111, 30\}, \{18, 69, 95, 44\}, \{49, 56, 64, 57\}, \{102, 52, 11, 61\},
\{14, 16, 99, 97\}, \{13, 31, 100, 82\}, \{4, 53, 109, 60\}, \{36, 25, 77, 88\}.
\]

Theorem 9 Let \(n = 10q + 1 \) be a prime, where \(q \) is an even integer. The cosets of the subgroup \(Q_0 = \langle \alpha^{2q} \rangle \) of order 5 in \(Q \)
\[
Q_0 = \{\alpha^{2q}, \alpha^{4q}, \alpha^{6q}, \alpha^{8q}, \alpha^{10q} = 1\},
\]
\[
Q_1 = \{\alpha^{2q+2}, \alpha^{4q+2}, \alpha^{6q+2}, \alpha^{8q+2}, \alpha^{2}\},
\]
\[\vdots\]
\[
Q_{q-1} = \{\alpha^{4q-2}, \alpha^{6q-2}, \alpha^{8q-2}, \alpha^{10q-2}, \alpha^{2q-2}\}
\]
form a regular DSS with parameters \((n, 5, q, \rho)\), where
\[
\rho = \frac{5q}{2} - 3 \quad \text{if} \quad 5^{(n-1)/4} \neq 1 \pmod{n}. \quad (8)
\]

Proof. Let \(\varepsilon = \alpha^{(n-1)/5} \) be a primitive fifth root of unity in \(GF(n) \). For \(x \in GF(n) \), we have
\[
x^4 + x^3 + x^2 + x + 1 = (x - \varepsilon)(x - \varepsilon^2)(x - \varepsilon^3)(x - \varepsilon^4) ;
\]
hence for \(x = 1 \)
\[
5 = (1 - \varepsilon)(1 - \varepsilon^2)(1 - \varepsilon^3)(1 - \varepsilon^4) = \varepsilon^2(\varepsilon - 1)^2(\varepsilon^2 - 1)^2. \quad (9)
\]
Thus 5 is a square, and \(5^{(n-1)/4} \equiv 1, \) or \(-1 \pmod{n} \). By (9) we see that 5 is a fourth power if \(\varepsilon + 1 \) is a square, since \(\varepsilon \) is a square. By (8) 5 is not a fourth power, that is, \(\varepsilon + 1 \) does not belong to \(Q \). Thus either \(\varepsilon - 1 \) or \(\varepsilon^2 - 1 \) is a square, and \(S_5 = \{\varepsilon - 1, \varepsilon^2 - 1, \varepsilon^3 - 1, \varepsilon^4 - 1\} \) holds. In the case when \(5^{(n-1)/4} \not\equiv 1 \pmod{n} \), \(S_5 \) has parameters \(\lambda_1 = 2, \lambda_2 = 2 \), hence the corresponding DSS has parameter
\[
\rho = \min\{(5q/2 - 1) - 2, 5q/2 - 2\} = 5q/2 - 3.
\]
\[\Box\]
Example 10 Let $n = 41$, $q = 4$. We use 6 as a primitive element of Z_{41}. Then $5^{10} \not\equiv 1 \pmod{41}$. Thus the DSS from Theorem 9 has $\rho = 7$, and the four blocks Q_i are

$$
\{1, 10, 18, 16, 37\}, \{36, 32, 33, 2, 20\}, \{25, 4, 40, 31, 23\}, \{39, 21, 5, 9, 8\}.
$$

Note 3 If $n \equiv 1 \pmod{20}$ (resp. (mod12)) is a prime, then there is exactly one pair $(x, y) \in N \times N$ such that $n = x^2 + 4y^2$. Then 5(resp. −3) is a square in $GF(n)$, by the quadratic reciprocity law. In addition, 5 is a fourth power if and only if $y \equiv 0 \pmod{5}$ and −3 is a fourth power if $y \equiv 0 \pmod{3}$. Hence the value of ρ depends on whether the diophantine equation $x^2 + 36y^2 = n$ has solution in integers and (8) holds if the diophantine equation $x^2 + 100y^2 = n$ has no solution in integers. Similarly, it is known that 2 is a biquadratic of n if the diophantine equation $x^2 + 64y^2 = n$ has solution in integers.

Note 4 In the case $m = 5$, either $S_5 \subset Q$ or $S_5 \cap Q = \emptyset$ if $5^{(n-1)/4} \equiv 1 \pmod{n}$. In the case when $S_5 \subset Q$, i.e., $\varepsilon - 1$ is a quadratic of n, S_5 has parameters $\lambda_1 = 4$, $\lambda_2 = 0$, hence the corresponding DSS has parameter $\rho = 5q/2 - 5$. In the remaining case, i.e., $\varepsilon - 1$ is a non-quadratic of n, $S_5 \cap Q = \emptyset$, the parameters of S_5 are $\lambda_1 = 0$, $\lambda_2 = 4$, and $\rho = 5q/2 - 4$.

Example 11 Let $n = 101$, $q = 10$. We use 2 as a primitive element of Z_{101}. Then $5^{25} \equiv 1 \pmod{101}$ and $\varepsilon - 1 = 94 \equiv 2^{59} \pmod{101}$, where $\varepsilon = 95$ is a primitive fifth root of unity of Z_{101}. Thus the DSS from Note 4 has $\rho = 21$, and the ten blocks Q_i are

$$
\{1, 95, 36, 87, 84\}, \{4, 77, 43, 45, 33\}, \{16, 5, 71, 79, 31\}, \{64, 20, 82, 13, 23\}, \{54, 80, 25, 52, 92\},
\{14, 17, 100, 6, 65\}, \{56, 68, 97, 24, 58\}, \{22, 70, 85, 96, 30\}, \{88, 78, 37, 81, 19\}, \{49, 9, 47, 21, 76\}.
$$

Let $n = 461$, $q = 46$. We use 2 as a primitive element of Z_{461}. Then $5^{115} \equiv 1 \pmod{461}$ and $\varepsilon - 1 = 87 \equiv 2^{418} \pmod{461}$, where $\varepsilon = 88$ is a primitive fifth root of unity of Z_{461}. Thus the DSS from Note 4 has $\rho = 110$.

Theorem 12 Let $n = 12q + 1$ be a prime. The cosets of the subgroup $Q_0 = \langle \alpha^{2q} \rangle$ of order 6 in Q

\[Q_0 = \{\alpha^{2q}, \alpha^{4q}, \ldots, \alpha^{12q} = 1\},\]
\[Q_1 = \{\alpha^{2q+2}, \alpha^{4q+2}, \ldots, \alpha^2\},\]
\[\vdots\]
\[Q_{q-1} = \{\alpha^{4q-2}, \alpha^{6q-2}, \ldots, \alpha^{2q-2}\}.$$
form a regular DSS with parameters \((n, 6, q, \rho)\), where

\[
\rho = \begin{cases}
3q - 6 & \text{if } q \text{ is even and } (-3)^{(n-1)/4} \equiv 1 \pmod{n}, \\
3q - 5 & \text{if } q \text{ is odd and } (-3)^{(n-1)/4} \equiv 1 \pmod{n}, \\
3q - 4 & \text{if } q \text{ is even and } (-3)^{(n-1)/4} \not\equiv 1 \pmod{n}, \\
3q - 3 & \text{if } q \text{ is odd and } (-3)^{(n-1)/4} \not\equiv 1 \pmod{n}.
\end{cases}
\] (10)

Proof. Let \(\varepsilon = \alpha^{(n-1)/6}\) be a primitive 6th root of unity in \(GF(n)\). Then

\((\varepsilon - 1)^2(\varepsilon^2 - 1)^2 = (\varepsilon - 1)^4(\varepsilon + 1)^2 = -3\) since \(\varepsilon^2 - \varepsilon + 1 = 0\). Thus \(-3\) is a square by the QRL, and \((-3)^{(n-1)/4} \equiv 1, -1 \pmod{n}\). In addition, \(\varepsilon + 1\) belongs to \(Q\) if \((-3)^{(n-1)/4} \equiv 1 \pmod{Q}\). Thus if \((-3)^{(n-1)/4} \not\equiv 1 \pmod{n}\) then either \(\varepsilon - 1\) or \(\varepsilon^2 - 1\) is a square. In the other case, if \((-3)^{(n-1)/4} \equiv 1 \pmod{n}\) then \(\varepsilon - 1\) and \(\varepsilon^2 - 1\) are both squares since \((\varepsilon - 1)^2 = -\varepsilon = \alpha^{8q}\). Thus \(S_6 = \{\varepsilon - 1, \varepsilon^2 - 1, \varepsilon^3 - 1, \varepsilon^4 - 1, \varepsilon^5 - 1\}\) holds and \(\varepsilon^3 - 1 = 2\).

Since \(n \equiv 1 \pmod{4}\), \(-1 \in Q\). In addition, \(2 \in Q\) if \(n \equiv \pm 1 \pmod{8}\), and \(2 \not\in Q\) otherwise. Since \(n = 4q + 1\), then either \(n \equiv 1 \pmod{8}\) or \(n \equiv 5 \pmod{8}\). In the case when \(q\) is even and \((-3)^{(n-1)/4} \equiv 1 \pmod{n}\), \(S_6\) has parameters \(\lambda_1 = 5\), \(\lambda_2 = 0\), and the corresponding DSS has parameter

\[
\rho = \min\{(3q - 1) - 5, 3q - 0\} = 3q - 6.
\]

In the second case when \(q\) is odd and \((-3)^{(n-1)/4} \equiv 1 \pmod{n}\), \(S_6\) has parameters \(\lambda_1 = 4\), \(\lambda_2 = 1\), hence the corresponding DSS has parameter

\[
\rho = \min\{(3q - 1) - 4, 3q - 1\} = 3q - 5.
\]

In the third case when \(q\) is even and \((-3)^{(n-1)/4} \not\equiv 1 \pmod{n}\), \(S_6\) has parameters \(\lambda_1 = 3\), \(\lambda_2 = 2\), hence the corresponding DSS has parameter

\[
\rho = \min\{(3q - 1) - 3, 3q - 2\} = 3q - 4.
\]

In the fourth case when \(q\) is odd and \((-3)^{(n-1)/4} \not\equiv 1 \pmod{n}\), \(S_6\) has parameters \(\lambda_1 = 2\), \(\lambda_2 = 3\), hence the corresponding DSS has parameter

\[
\rho = \min\{(3q - 1) - 2, 3q - 3\} = 3q - 3,
\]

which is perfect. \(\square\)

Example 13 (a) Let \(n = 37\), \(q = 3\). Now \(2\) is a primitive element of \(Z_{37}\), and \((-3)^9 = 1\) \(\pmod{37}\). Thus the DSS from Theorem 12 has \(\rho = 4\), and the three blocks \(Q_i\) are

\[\{1, 27, 26, 36, 10, 11\}, \{4, 34, 30, 33, 3, 7\}, \{16, 25, 9, 21, 12, 28\}\]
(b) Let $n = 73$, $q = 6$. Now 5 is a primitive element of Z_{73}, and $(-3)^{18} = -1$ (mod 73). Thus the DSS from Theorem 12 has $\rho = 14$, and the three blocks Q_i are

\[
\{1, 9, 8, 72, 64, 65\}, \{25, 6, 54, 48, 67, 19\}, \{41, 4, 36, 32, 69, 37\},
\{3, 27, 24, 70, 46, 49\}, \{2, 18, 16, 71, 55, 57\}, \{50, 12, 35, 23, 61, 38\}.
\]

(c) Let $n = 109$, $q = 9.6$ is a primitive element of Z_{109}. Then $(-3)^{27} = -1$ (mod 109). Thus the DSS with $\rho = 24$ from Theorem 12 is perfect, and the nine sets Q_i are

\[
\{1, 64, 63, 108, 45, 46\}, \{36, 15, 88, 73, 94, 21\}, \{97, 104, 7, 12, 5, 102\},
\{4, 38, 34, 105, 71, 75\}, \{35, 60, 25, 74, 49, 84\}, \{61, 89, 28, 48, 20, 81\},
\{16, 43, 27, 93, 66, 82\}, \{31, 22, 100, 78, 87, 9\}, \{26, 29, 3, 83, 80, 106\}.
\]

(d) Let $n = 193$, $q = 16$. Now 5 is a primitive element of Z_{193}, and $(-3)^{48} = 1$ (mod 193). Thus the DSS from Theorem 12 has $\rho = 42$.

3 DSS and cyclotomic numbers

For an integer e, let n be an odd prime such that $e|(n - 1)$, and let α be a primitive element in $GF(n)$. Then the eth cyclotomic classes $C^e_0, C^e_1, \ldots, C^e_{e-1}$ are defined by

\[
C^e_i = \{\alpha^t \mid t \equiv i \pmod{e}\} \quad \text{for} \quad 0 \leq i \leq e - 1.
\]

In other words, C^e_i are cosets of the subgroup C^e_0 of eth powers in $GF(n)^*$. We calculate the subscripts of C^e_i modulo e, so that if $x \in C^e_i$ and $y \in C^e_j$, then $xy \in C^e_{i+j}$. We note that $-1 \in C^e_0$ if and only if $2e|(n - 1)$, since $-1 = \alpha^{(n-1)/2}$ is an eth power if and only if $(n - 1)/2 \equiv 0 \pmod{e}$. For a given n and e, the cyclotomic numbers (of order e) are defined as follows:

\[
(i, j)_e = |\{(x, y) \mid x \in C^e_i, y \in C^e_j, x = y - 1\}|.
\]

These numbers are important for the construction of difference sets in the additive group G of $GF(n)$ by taking suitable unions of cyclotomic classes. Details are given in [1]. We pick up the most important special case to construct DSS later on, where one uses just the cyclotomic class C^e_0.

Lemma 14 [1]. For positive integers e and f, let $n = ef + 1$ be a prime power. Then $D = C^e_0$ is a difference set in G (with parameters $(n, f, (f - 1)/e)$) if and only if e is even, f is odd and $(i, 0)_e = (f - 1)/e$ for $0 \leq i \leq e - 1$.
In this section we generalize some of the constructions from Section 2 by using more general cyclotomic cosets instead of the set of quadratic residues Q. For this purpose, we will use partitions of the set $D = C_0^e$. Throughout this section, we assume that n is a prime. Note that for any prime $n = ef + 1$ D is a relative difference set: the multi-set of $f(f - 1)$ differences

$$\{x - y \pmod{n} \mid x, y \in D, x \neq y\} = \{c(\alpha^t - 1) \mid c \in C_0^e, 1 \leq t < f\}$$

contains every $z \in C_i^e$ exactly $(i, 0)_e$ times for each i. Equivalently, the cyclic 1-(n, f, f) design D^e consisting of the cyclic shifts of D modulo n is a partially balanced design such that any pair $x, y \in Z_n$, $x \neq y$ occurs in exactly $(i, 0)_e$ blocks of D^e whenever $x - y \in C_i^e$. We note that if e is even and f is odd then -1 does not belong to C_0^e but C_i^e, where $\ell = (n - 1)/2$. Then $(i, j)_e = (j + \ell, i + \ell)_e$. Thus $(i, 0)_e = (i + \ell, 0)_e$ since $(i, j)_e = (-i, j - i)_e$.

Assume that $|D| = mq$ (thus, $n = emq + 1$). We want to partition D into q disjoint subsets of size m that will be the blocks of a regular DSS. Let D_m be a subgroup of C_0^e of order m,

$$D_m = C_0^{eq} = \{\alpha^{eqt} \mid 0 \leq t < e\}.$$

Then D is partitioned into q disjoint cosets of D_m:

$$D = D_m \cup (D_m\alpha^e) \cup \ldots \cup (D_m\alpha^{e(q-1)}) = C_0^{eq} \cup C_e^{eq} \cup \ldots \cup C_{e(q-1)}^{eq}.$$

We consider the DSS with q blocks of size m

$$Q_0 = D_m; Q_1 = D_m\alpha^e, \ldots, Q_{q-1} = D_m\alpha^{e(q-1)}.$$

Let G be the group of transformations $\phi : GF(n) \longrightarrow GF(n)$ of the form

$$\phi(x) = cx + b \pmod{n}; \ c \in C_0^e, \ b \in GF(n).$$

The group G is of order $n(n - 1)/e$ and contains the cyclic group Z_n and the multiplicative group D as subgroups. The group G partitions the 2-subsets of Z_n into e orbits: each orbit consists of all pairs $\{x, y\}$ such that $x - y \in C_i^e$ for $0 \leq i < e$.

The orbit D_m^G of D_m under G consists of $|G|/m = nq$ subsets of size m. The collection $\Delta = D_m^G$ is a cyclic design with base blocks $Q_0, Q_1, \ldots, Q_{q-1}$. Since the group G has q orbits on the 2-subsets of Z_n, Δ is a partially balanced design with q classes: each pair x, y such that $x - y \in C_i^e$ occurs in λ_i blocks of Δ (for some λ_i) for $0 \leq i < e$.

Let S_m be the subset of $GF(n)$ defined as follows.

$$S_m = \{\alpha^{eqi} - 1 \mid 1 \leq i \leq m - 1\}.$$
Then the multi-set of differences
\[\{ x - y \pmod{n} \mid x, y \in D_m, \ x \neq y \} \]
equals
\[\{ s\alpha^{eq} \pmod{n} \mid s \in S_m, \ 0 \leq i < m \}. \]
Thus each \(\lambda_i \) depends on \(S_m \) and \((h,0)_{eq} \) is the number of \(s \) such that \(s \in C^e_h \).
In addition, we have
\[C^e_i = C^e q_i \cup C^e q_{i+e} \cup C^e q_{i+2e} \cup \ldots \cup C^e q_{i+(q-1)e}, \]
thus
\[\lambda_i = \sum_{j=0}^{q-1} (i + je, 0)_{eq}. \]
It follows that the collection \(\{Q_i\}_{i=0}^{q-1} \) is a DSS such that the multi-set of
differences (1) contains every \(z \in C^e_i \) exactly \((i,0)_e - \sum_{j=0}^{q-1} (i + je, 0)_{eq} \) times
for \(0 \leq i < e \).
Thus, we have the following theorem.

Theorem 15 For positive integers \(e, m \) and \(q \), let \(n = emq + 1 \) be a prime. The sets
\[Q_0 = C^e_0, \ Q_1 = C^e_e, \ Q_2 = C^e_{2e}, \ldots, \ Q_{q-1} = C^e_{(q-1)e} \]
form a regular DSS with parameters \((n,m,q,\rho)\), where
\[\rho = \min\{(i,0)_e - \sum_{j=0}^{q-1} (i + je, 0)_{eq} \mid 0 \leq i < e \}. \]
In particular, if \((i,0)_e - \sum_{j=0}^{q-1} (i + je, 0)_{eq}\) is constant for each \(i \), then the DSS
is perfect, where \(\rho = m(q-1)/e \).

Example 16 (a) Let \(n = 73, \ e = 3, \ q = 2, \ m = 12 \). We use 5 as a primitive
element of \(Z_{73} \). Then
\[
(0,0)_3 = 8, \ (1,0)_3 = 6, \ (2,0)_3 = 9, \\
(0,0)_6 = 2, \ (1,0)_6 = 2, \ (2,0)_6 = 3, \\
(3,0)_6 = 2, \ (4,0)_6 = 2, \ (5,0)_6 = 0.
\]
Thus the DSS from Theorem 15 has \(\rho = 2 \), and the blocks \(Q_i \) of size 12 are
\[
\{1, 3, 9, 27, 8, 24, 72, 70, 64, 46, 65, 49\}, \{52, 10, 30, 17, 51, 7, 21, 63, 43, 56, 22, 66\}.
\]
(b) Let \(n = 109, e = 3, q = 2, m = 18 \). We use 6 as a primitive element. Then the DSS with \(\rho = 6 \) is perfect since

\[
(0,0)_3 = 11, \quad (1,0)_3 = 10, \quad (2,0)_3 = 14,
\]
\[
(0,0)_6 = 2, \quad (1,0)_6 = 0, \quad (2,0)_6 = 2,
\]
\[
(3,0)_6 = 3, \quad (4,0)_6 = 4, \quad (5,0)_6 = 6.
\]

Example 17 (a) Let \(n = 73, e = 4, q = 3, m = 6 \). We use 5 as a primitive element of \(\mathbb{Z}_{73} \). Then

\[
(0,0)_4 = 5, \quad (1,0)_4 = 6, \quad (2,0)_4 = 4, \quad (3,0)_4 = 2
\]
\[
(0,0)_{12} = 2, \quad (1,0)_{12} = 0, \quad (2,0)_{12} = 0, \quad (3,0)_{12} = 0
\]
\[
(4,0)_{12} = 0, \quad (5,0)_{12} = 0, \quad (6,0)_{12} = 0, \quad (7,0)_{12} = 0
\]
\[
(8,0)_{12} = 1, \quad (9,0)_{12} = 2, \quad (10,0)_{12} = 0, \quad (11,0)_{12} = 0.
\]

Thus the DSS from Theorem 15 has \(\rho = 2 \), and its blocks \(Q_i \) of size 6 are

\[
\{1, 9, 8, 72, 64, 65\}, \{41, 4, 36, 32, 69, 37\}, \{2, 18, 16, 71, 55, 57\}.
\]

(b) Let \(n = 769, e = 4, q = 3, m = 64 \). We use 11 as a primitive element. Then the DSS with \(\rho = 32 \) is perfect since

\[
(0,0)_4 = 38, \quad (1,0)_4 = 48, \quad (2,0)_4 = 51, \quad (3,0)_4 = 54
\]
\[
(0,0)_{12} = 0, \quad (1,0)_{12} = 6, \quad (2,0)_{12} = 9, \quad (3,0)_{12} = 6
\]
\[
(4,0)_{12} = 4, \quad (5,0)_{12} = 4, \quad (6,0)_{12} = 6, \quad (7,0)_{12} = 10
\]
\[
(8,0)_{12} = 2, \quad (9,0)_{12} = 6, \quad (10,0)_{12} = 4, \quad (11,0)_{12} = 6.
\]

Acknowledgment. The first author would like to thank Michigan Technological University for the hospitality during his visit in June and July 2004 while this paper was being written.

References

