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Abstract

Difference Systems of Sets (DSS) are combinatorial configurations that arise in con-
nection with code synchronization. A method for the construction of DSS from par-
titions of cyclic difference sets was introduced in [6] and applied to cyclic difference
sets (n, (n−1)/2, (n−3)/4) of Paley type, where n ≡ 3 (mod 4) is a prime number.
This paper develops similar constructions for prime numbers n ≡ 1 (mod 4) that
use partitions of the set of quadratic residues, as well as more general cyclotomic
classes.
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1 Introduction

A Difference System of Sets (DSS) with parameters (n, τ0, . . . , τq−1, ρ) is a
collection of q disjoint subsets Qi ⊆ {1, 2, . . . , n}, |Qi| = τi, 0 ≤ i ≤ q − 1,
such that the multi-set

{a− b (mod n) | a ∈ Qi, b ∈ Qj, 0 ≤ i, j < q, i 6= j} (1)
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contains every number i, 1 ≤ i ≤ n−1 at least ρ times. A DSS is perfect if every
number i, 1 ≤ i ≤ n − 1 is contained exactly ρ times in the multi-set (1). A
DSS is regular if all subsets Qi are of the same size: τ0 = τ1 = . . . = τq−1 = m.
We use the notation (n, m, q, ρ) for a regular DSS on n points with q subsets
of size m.

Difference systems of sets were introduced by V. Levenshtein [4] (see also [5])
and were used for the construction of codes that allow for synchronization in
the presence of errors. A q-ary code of length n is a subset of the set F n

q of
all vectors of length n over Fq = {0, 1, ..., q − 1}. If q is a prime power, we
often identify Fq with a finite field of order q, in which case i (0 < i ≤ q − 1)
stands for the ith power of a primitive element. A linear q-ary code (q a prime
power), is a linear subspace of F n

q . If x = x1 · · ·xn, y = y1 · · · yn ∈ F n
q , and

0 ≤ i ≤ n−1, the ith joint of x and y is defined as Ti(x, y)=xi+1 · · ·xny1 · · · yi.
In particular, Ti(x, x) is a cyclic shift of x. The comma-free index ρ = ρ(C) of
a code C ⊆ F n

q is defined as

ρ = min d(z, Ti(x, y)),

where the minimum is taken over all x, y, z ∈ C and all i = 1, ..., n − 1, and
d is the Hamming distance between vectors in F n

q . The comma-free index
ρ(C) allows one to distinguish a code word from a joint of two code words
(and hence provides for synchronization of code words) provided that at most
bρ(C)/2c errors have occurred in the given code word [3].

Since the zero vector belongs to any linear code, the comma-free index of a lin-
ear code is zero. Levenshtein [4] gave the following construction of comma-free
codes of index ρ > 0 obtained as cosets of linear codes, that utilizes difference
systems of sets. Given a DSS {Q0, . . . , Qq−1} with parameters (n, τ0, . . . , τq−1, ρ),
define a linear q-ary code C ⊆ F n

q of dimension n− r, where

r =
q−1∑
i=0

|Qi|,

whose information positions are indexed by the numbers not contained in any
of the sets Q0, . . . , Qq−1, and having all redundancy symbols equal to zero.
Replacing in each vector x ∈ C the positions indexed by Qi with the symbol i
(0 ≤ i ≤ q− 1), yields a coset C ′ of C that has a comma-free index at least ρ.

This application of DSS to code synchronization requires that the number

r = rq(n, ρ) =
q−1∑
j=0

|Qi|

is as small as possible.
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Levenshtein [4] proved the following lower bound on rq(n, ρ):

rq(n, ρ) ≥
√

qρ(n− 1)

q − 1
, (2)

with equality if and only if the DSS is perfect and regular.

In [6], Tonchev introduced a method for the construction of DSS from parti-
tions of cyclic difference sets. This method was applied to the (n, (n−1)/2, (n−
3)/4) difference set of Paley (or quadratic residues) type, where n is any prime
congruent to 3 modulo 4. In this paper, the method from [6] is extended to
primes n ≡ 1 (mod 4) by using partitions of the set of quadratic residues
modulo n (Section 2), or partitions defined by more general cyclotomic classes
(Section 3). Explicit constructions of infinite series of regular DSS are given
for 2 ≤ m ≤ 6 in Section 2. A general construction for arbitrary m based on
cyclotomic classes is described in Section 3.

2 DSS and quadratic residues

Let D = {x1, x2, . . . , xk} be a (v, k, λ) difference set (cf. [1], [2], [7]), that
is, a subset of k residues modulo v such that every positive residue modulo v
occurs exactly λ times in the multi-set of differences

{xi − xj (mod v) | xi, xj ∈ D, xi 6= xj}.

Then the collection of singletons Q0 = {x1}, . . . , Qk−1 = {xk} is a perfect
regular DSS with parameters (n = v, m = 1, q = k, ρ = λ).

This simple construction was generalized in [6] by replacing the collection of
singletons of a given cyclic difference set by any partition such that the parts
are base blocks of a cyclic 2-design. More precisely, the following statement
holds.

Lemma 1 [6] Let D ⊆ {1, 2, . . . , n}, |D| = k, be a cyclic (n, k, λ) difference
set. Let D be partitioned into q disjoint subsets Q0, . . . , Qq−1, and let ∆ be
the cyclic design having as a collection of blocks the union of orbits of the
base blocks Q0, . . . , Qq−1 under the cyclic group Cn. Assume that every two
points are contained in at most λ1 blocks of ∆. Then {Qi}q−1

i=0 is a DSS with
parameters (n, τ0, . . . , τq−1, ρ = λ− λ1), where τi = |Qi|, i = 0, . . . , q − 1. The
DSS {Qi}q−1

i=0 is perfect if and only if ∆ is a pairwise balanced design with
every two points occurring together in exactly λ1 blocks.

A class of new DSS were found in [6] from partitions of the (n, (n− 1)/2, (n−
3)/4) cyclic difference set of quadratic-residue (QR) type, where n = 4t + 3 is
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prime. The partitions were defined by a subgroup of the multiplicative group
Q of order (n− 1)/2 consisting of all quadratic residues and its cosets in Q.

It is the aim of this section to present similar constructions for the case of
prime numbers n of the form n = 4t + 1. We use again partitions of the set
Q of quadratic residues modulo n. The major difference between the cases
n = 4t + 3 or n = 4t + 1 is that if n ≡ 3 (mod 4) the set Q is a cyclic
difference set (with λ = (n− 3)/4 = t), while if n ≡ 1 (mod 4) Q is a relative
difference set: the multi-set of 2t(2t− 1) differences

{x− y (mod n) | x, y ∈ Q, x 6= y}

contains every z ∈ Q exactly t − 1 times, and every z /∈ Q exactly t times.
Equivalently, the cyclic 1-(4t+1, 2t, 2t) design Q∗ consisting of the cyclic shifts
of Q modulo n is a partially balanced design such that any pair x, y ∈ Zn, x 6=
y occurs in exactly t − 1 blocks of Q∗ whenever x − y ∈ Q, and in exactly t
blocks if x− y /∈ Q.

Assume that |Q| = mq (thus, n = 2mq + 1). We want to partition Q into q
disjoint subsets of size m that will be the blocks of a regular DSS. Let α be a
primitive element of the finite field of order n, GF (n). Then

Q = {α2i | 1 ≤ i ≤ (n− 1)/2}.

Let Dm be a subgroup of Q of order m,

Dm = {α2qi | 1 ≤ i ≤ m}.

Then Q is partitioned into q disjoint cosets of Dm:

Q = Dm ∪ (Dmα2) ∪ . . . ∪ (Dmα2(q−1)).

We consider the DSS having as blocks the following subsets of size m:

Q0 = Dm, Q1 = Dmα2, . . . , Qq−1 = Dmα2(q−1).

Let G be the group of transformations φ : GF (n) −→ GF (n), where

φ(x) = a2x + b (mod n); a, b ∈ GF (n), a 6= 0.

The group G is of order n(n− 1)/2 and contains the cyclic group Zn and the
multiplicative group Q as subgroups. The collection of (unordered) 2-subsets
of Zn is partitioned into two orbits under the action of G: one orbit consists
of all pairs {x, y} such that x−y ∈ Q, and the second orbit contains the pairs
{x, y} such that x− y /∈ Q.

Note that Dm is a subgroup of Q of order m, Q acts regularly on itself, and
n is prime. Thus, the stabilizer of Dm in G is of order m and the orbit DG

m of
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Dm under G consists of |G|/m = nq subsets of size m. The collection ∆=DG
m

is a cyclic design with base blocks Q0, Q1, . . . , Qq−1. Since the group G has
two orbits on the 2-subsets of Zn, ∆ is a partially balanced design with two
classes: each pair x, y such that x− y ∈ Q occurs in λ1 blocks of ∆ (for some
λ1), while each pair x, y such that x − y /∈ Q occurs in λ2 blocks (for some
λ2). It follows that the collection {Qi}q−1

i=0 is a DSS such that the multi-set of
differences (1) contains every z ∈ Q exactly t− 1− λ1 times, and every z /∈ Q
exactly t− λ2 times. Thus, we have the following.

Theorem 2 The collection {Qi}q−1
i=0 is a DSS with parameters (n, m, q, ρ),

where
ρ = min(t− 1− λ1, t− λ2). (3)

2

Let Sm be a subset of GF (n) defined as follows:

Sm = {α2qi − 1 | 1 ≤ i ≤ m− 1},

where m = (n− 1)/(2q). Then the multi-set of differences

{x− y (mod n) | x, y ∈ Dm, x 6= y}

coincides with the multi-set

{sα2qi (mod n) | s ∈ Sm, 1 ≤ i ≤ m}.

It follows that λ1 is equal to the number of quadratic residues in Sm, while λ2

is equal to the number of quadratic non-residues in Sm. Thus, the parameters
λ1 and λ2 of ∆ can be determined by counting the quadratic residues (resp.
non-residues) in Sm. Therefore, we will often refer to λ1, λ2 as parameters of
Sm.

Note that λ1 + λ2 = m − 1 and (3) imply the following lower bound on ρ in
terms of m and q:

ρ ≥ m(q − 2)

2
.

The next theorems utilize the construction of Theorem 2 for subgroups of
relatively small order m. Applying this construction with a subgroup Dm of
Q of order m = 2 yields the following result.

Theorem 3 Let n = 4q+1 be a prime. The cosets of the subgroup Q0 = 〈α2q〉
of order 2 in Q

Q0 = {α2q = −1, α4q = 1}, Q1 = {α2q+2, α2}, . . . , Qq−1 = {α4q−2, α2(q−1)}
(4)

5



form a regular DSS with parameters (n, 2, q, ρ), where

ρ =

 q − 2 if n ≡ 1 (mod 8),

q − 1 if n ≡ 5 (mod 8).
(5)

Proof. The difference of the two elements of Q0 = D2 = {α2q = −1, α4q = 1}
is ±2 modulo n. Since n ≡ 1 (mod 4), −1 ∈ Q. In addition, 2 ∈ Q by the QRL
if n ≡ ±1 (mod 8), and 2 /∈ Q otherwise. Since n = 4q + 1, then either n ≡ 1
(mod 8) or n ≡ 5 (mod 8). In the case when n ≡ 1 (mod 8) the partially
balanced cyclic design ∆ with base blocks (4), i.e., D2 and its cosets in Q, has
parameters λ1 = 1, λ2 = 0, hence the corresponding DSS has parameter

ρ = min{(q − 1)− 1, q − 0} = q − 2.

In the remaining case, n ≡ 5 (mod 8), the parameters of ∆ are λ1 = 0, λ2 = 1,
and

ρ = min{(q − 1)− 0, q − 1} = q − 1.

2

Note 1 The DSS of Theorem 3 in the case n ≡ 5 (mod 8) is perfect, hence
optimal with respect to the Levenshtein bound (2). If n ≡ 1 (mod 8), we have
a DSS with

rq(n, ρ) = rq(n, q − 2) = (n− 1)/2 = 2q,

and the right-hand side of the inequality (2) is

√
q(q − 2)(4q)

q − 1
= 2q

√
q − 2

q − 1
.

Thus, this DSS is asymptotically optimal.

Example 4 (a) Let n = 13, q = 3. We use 2 as a primitive element of Z13.
The DSS with ρ = 2 from Theorem 3 is perfect and consists of the following
three pairs Qi:

{1, 12}, {4, 9}, {3, 10}.
(b) Let n = 17, q = 4. Now 3 is a primitive element of Z17. The DSS from
Theorem 3 has ρ = 2 and consists of the following four pairs Qi:

{1, 16}, {9, 8}, {13, 4}, {15, 2}.

Next we apply this construction by using subgroups of Q of order m = 3, 4, 5
and 6.
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Theorem 5 Let n = 6q+1 be a prime, where q is an even integer. The cosets
of the subgroup Q0 = 〈α2q〉 of order 3 in Q

Q0 = {α2q, α4q, α6q = 1}, Q1 = {α2q+2, α4q+2, α2}, . . . , Qq−1 = {α4q−2, α6q−2, α2q−2}

form a regular DSS with parameters (n, 3, q, ρ), where

ρ =

 3q/2− 3 if (−3)(n−1)/4 ≡ 1 (mod n),

3q/2− 2 if (−3)(n−1)/4 6≡ 1 (mod n).
(6)

Proof. Let ε = α(n−1)/3 be a primitive cubic root of unity in GF (n). Then (ε−
1)2 = −3ε. Since ε is a fourth power,−3 is a square, and (−3)(n−1)/4 ≡ 1, or − 1 (mod n).
In addition, ε − 1 belongs to Q if (−3)(n−1)/4 ≡ 1 (mod n). Similarly, ε2 − 1
belongs to Q if ε− 1 belongs to Q. It follows that S3 = {ε− 1, ε2− 1}. In the
case when (−3)(n−1)/4 ≡ 1 (mod n), the parameters of the cyclic design ∆ are
λ1 = 2, λ2 = 0, hence by (3)

ρ = min{(3q/2− 1)− 2, 3q/2− 0} = 3q/2− 3.

In the remaining case, (−3)(n−1)/4 6≡ 1 (mod n), the parameters of S3 are λ1 =
0, λ2 = 2, and

ρ = min{(3q/2− 1)− 0, 3q/2− 2} = 3q/2− 2.

2

Example 6 (a) Let n = 13, q = 2. We use 2 as a primitive element of Z13.
Then (−3)3 6≡ 1 (mod 13). Thus the DSS from Theorem 5 has ρ = 1, and
the two blocks are the cyclic group Q0 = {1, 3, 9} = 〈3 = 24〉 ' C3 and
Q1 = 4Q0 = {4, 12, 10}.
(b) Let n = 37, q = 6. We use 2 as a primitive element of Z37. Then
(−3)9 ≡ 1 (mod 37). Thus the DSS from Theorem 5 has ρ = 6, and the six
blocks Qi are

{1, 26, 10}, {4, 30, 3}, {16, 9, 12}, {27, 36, 11}, {34, 33, 7}, {25, 21, 28}.

Note that Q0 is a cyclic subgroup of Q of order 3 and the remaining blocks
are the cosets of Q0 in Q.

Theorem 7 Let n = 8q+1 be a prime. The cosets of the subgroup Q0 = 〈α2q〉
of order 4 in Q
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Q0 = {α2q, α4q, α6q, α8q = 1},
Q1 = {α2q+2, α4q+2, α6q+2, α2},

...

Qq−1 = {α4q−2, α6q−2, α8q−2, α2q−2}

form a regular DSS with parameters (n, 4, q, ρ), where

ρ =



2q − 4 if q is even and 2 is a biquadratic of n, or

q is odd and 2 is a non-biquadratic of n,

2q − 2 if q is even and 2 is a non-biquadratic of n, or

q is odd and 2 is a biquadratic of n.

(7)

Proof. Let i = α(n−1)/4 be a primitive quartic root of unity in GF (n). Then
(i− 1)2 = −2i and S4 = {i− 1, −2, −i− 1} holds. Since n− 1 ≡ 0 (mod 8),
−1 is a fourth power. Note that i is a fourth power if q is even. Otherwise,
i is not a fourth power but a square. Thus, i − 1 is a square if q is even and
2 is a biquadratic of n, or if q is odd and 2 is a non-biquadratic of n. In the
first case, S4 has parameters λ1 = 3, λ2 = 0, hence the corresponding DSS
has parameter

ρ = min{(2q − 1)− 3, 2q − 0} = 2q − 4.

In the remaining case, the parameters of S4 are λ1 = 1, λ2 = 2, and

ρ = min{(2q − 1)− 1, 2q − 2} = 2q − 2.

2

Note 2 The DSS of Theorem 7 is perfect in the case when q is even and 2 is
a non-biquadratic of n, and when q is odd and 2 is a biquadratic of n.

Example 8 (a) Let n = 17, q = 2. We use 3 as a primitive element of Z17.
We have 2 ≡ 32 (mod 17) and 2 is not a biquadratic of 17. Thus the DSS with
ρ = 2 from Theorem 7 is perfect, and the two blocks Qi are

{1, 13, 16, 4}, {9, 15, 8, 2}.

(b) Let n = 73, q = 9. Now 5 is a primitive element of Z73 and 2 is a
biquadratic of 73. Thus the DSS with ρ = 16 from Theorem 7 is perfect, and
the nine blocks Qi are

{1, 27, 72, 46}, {25, 18, 48, 55}, {41, 12, 32, 61}, {3, 8, 70, 65}, {2, 54, 71, 19},

{50, 36, 23, 37}, {9, 24, 64, 49}, {6, 16, 67, 57}, {4, 35, 69, 38}.
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(c) Let n = 41, q = 5. Now 6 is a primitive element of Z41, and 2 is not a
biquadratic of 41. Thus the DSS from Theorem 7 has ρ = 6, and the five
blocks Qi are

{1, 32, 40, 9}, {36, 4, 5, 37}, {25, 21, 16, 20}, {39, 18, 2, 23}, {10, 33, 31, 8}.

(d) Let n = 113, q = 14. Now 3 is a primitive element of Z13, and 2 is a
biquadratic of 113. Thus the DSS from Theorem 7 has ρ = 24, and the 14
blocks Qi are

{1, 98, 112, 15}, {9, 91, 104, 22}, {81, 28, 32, 85}, {51, 26, 62, 87}, {7, 8, 106, 105},

{63, 72, 50, 41}, {2, 83, 111, 30}, {18, 69, 95, 44}, {49, 56, 64, 57}, {102, 52, 11, 61},

{14, 16, 99, 97}, {13, 31, 100, 82}, {4, 53, 109, 60}, {36, 25, 77, 88}.

Theorem 9 Let n = 10q + 1 be a prime, where q is an even integer. The
cosets of the subgroup Q0 = 〈α2q〉 of order 5 in Q

Q0 = {α2q, α4q, α6q, α8q, α10q = 1},
Q1 = {α2q+2, α4q+2, α6q+2, α8q+2, α2},

...

Qq−1 = {α4q−2, α6q−2, α8q−2, α10q−2, α2q−2}

form a regular DSS with parameters (n, 5, q, ρ), where

ρ = 5q/2− 3 if 5(n−1)/4 6≡ 1 (mod n). (8)

Proof. Let ε = α(n−1)/5 be a primitive fifth root of unity in GF (n). For
x ∈ GF (n), we have

x4 + x3 + x2 + x + 1 = (x− ε)(x− ε2)(x− ε3)(x− ε4) :

hence for x = 1

5 = (1− ε)(1− ε2)(1− ε3)(1− ε4) = ε2(ε− 1)2(ε2 − 1)2. (9)

Thus 5 is a square, and 5(n−1)/4 ≡ 1, or − 1 (mod n). By (9) we see that 5
is a fourth power if ε + 1 is a square, since ε is a square. By (8) 5 is not
a fourth power, that is, ε + 1 does not belong to Q. Thus either ε − 1 or
ε2 − 1 is a square, and S5 = {ε − 1, ε2 − 1, ε3 − 1, ε4 − 1} holds. In the
case when 5(n−1)/4 6≡ 1 (mod n), S5 has parameters λ1 = 2, λ2 = 2, hence the
corresponding DSS has parameter

ρ = min{(5q/2− 1)− 2, 5q/2− 2} = 5q/2− 3.

2
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Example 10 Let n = 41, q = 4. We use 6 as a primitive element of Z41.
Then 510 6≡ 1 (mod 41). Thus the DSS from Theorem 9 has ρ = 7, and the
four blocks Qi are

{1, 10, 18, 16, 37}, {36, 32, 33, 2, 20}, {25, 4, 40, 31, 23}, {39, 21, 5, 9, 8}.

Note 3 If n ≡ 1 (mod 20) (resp. (mod12)) is a prime, then there is exactly
one pair (x, y) ∈ N ×N such that n = x2 + 4y2. Then 5(resp. −3) is a square
in GF (n), by the quadratic reciprocity law. In addition, 5 is a fourth power if
and only if y ≡ 0 (mod 5) and −3 is a fourth power if y ≡ 0 (mod 3). Hence
the value of ρ depends on whether the diophantine equation x2 +36y2 = n has
solution in integers and (8) holds if the diophantine equation x2 + 100y2 = n
has no solution in integers. Similarly, it is known that 2 is a biquadratic of n
if the diophantine equation x2 + 64y2 = n has solution in integers.

Note 4 In the case m = 5, either S5 ⊂ Q or S5∩Q = ∅ if 5(n−1)/4 ≡ 1 (mod n).
In the case when S5 ⊂ Q, i.e., ε − 1 is a quadratic of n, S5 has parameters
λ1 = 4, λ2 = 0, hence the corresponding DSS has parameter ρ = 5q/2 − 5.
In the remaining case, i.e., ε − 1 is a non-quadratic of n, S5 ∩ Q = ∅, the
parameters of S5 are λ1 = 0, λ2 = 4, and ρ = 5q/2− 4.

Example 11 Let n = 101, q = 10. We use 2 as a primitive element of Z101.
Then 525 ≡ 1 (mod 101) and ε− 1 = 94 ≡ 259 (mod 101), where ε = 95 is a
primitive fifth root of unity of Z101. Thus the DSS from Note 4 has ρ = 21,
and the ten blocks Qi are

{1, 95, 36, 87, 84}, {4, 77, 43, 45, 33}, {16, 5, 71, 79, 31}, {64, 20, 82, 13, 23}, {54, 80, 25, 52, 92},

{14, 17, 100, 6, 65}, {56, 68, 97, 24, 58}, {22, 70, 85, 96, 30}, {88, 78, 37, 81, 19}, {49, 9, 47, 21, 76}.

Let n = 461, q = 46. We use 2 as a primitive element of Z461. Then 5115 ≡ 1 (mod 461)
and ε− 1 = 87 ≡ 2218 (mod 461), where ε = 88 is a primitive fifth root of
unity of Z461. Thus the DSS from Note 4 has ρ = 110.

Theorem 12 Let n = 12q + 1 be a prime. The cosets of the subgroup Q0 =
〈α2q〉 of order 6 in Q

Q0 = {α2q, α4q, . . . , α12q = 1},
Q1 = {α2q+2, α4q+2, . . . , α2},

...

Qq−1 = {α4q−2, α6q−2, . . . , α2q−2}
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form a regular DSS with parameters (n, 6, q, ρ), where

ρ =



3q − 6 if q is even and (−3)(n−1)/4 ≡ 1 (mod n),

3q − 5 if q is odd and (−3)(n−1)/4 ≡ 1 (mod n),

3q − 4 if q is even and (−3)(n−1)/4 6≡ 1 (mod n),

3q − 3 if q is odd and (−3)(n−1)/4 6≡ 1 (mod n).

(10)

Proof. Let ε = α(n−1)/6 be a primitive 6th root of unity in GF (n). Then
(ε−1)2(ε2−1)2 = (ε−1)4(ε+1)2 = −3 since ε2−ε+1 = 0. Thus −3 is a square
by the QRL, and (−3)(n−1)/4 ≡ 1, or − 1 (mod n). In addition, ε+1 belongs
to Q if (−3)(n−1)/4 ≡ 1 (mod n). Thus if (−3)(n−1)/4 6≡ 1 (mod n) then either
ε − 1 or ε2 − 1 is a square. In the other case, if (−3)(n−1)/4 ≡ 1 (mod n)
then ε − 1 and ε2 − 1 are both squares since (ε − 1)2 = −ε = α8q. Thus
S6 = {ε− 1, ε2 − 1, ε3 − 1, ε4 − 1, ε5 − 1} holds and ε3 − 1 = −2.

Since n ≡ 1 (mod 4), −1 ∈ Q. In addition, 2 ∈ Q if n ≡ ±1 (mod 8), and
2 /∈ Q otherwise. Since n = 4q + 1, then either n ≡ 1 (mod 8) or n ≡ 5
(mod 8). In the case when q is even and (−3)(n−1)/4 ≡ 1 (mod n). Thus, S6

has parameters λ1 = 5, λ2 = 0, and the corresponding DSS has parameter

ρ = min{(3q − 1)− 5, 3q − 0} = 3q − 6.

In the second case when q is odd and (−3)(n−1)/4 ≡ 1 (mod n), S6 has param-
eters λ1 = 4, λ2 = 1, hence the corresponding DSS has parameter

ρ = min{(3q − 1)− 4, 3q − 1} = 3q − 5.

In the third case when q is even and (−3)(n−1)/4 6≡ 1 (mod n), S6 has param-
eters λ1 = 3, λ2 = 2, hence the corresponding DSS has parameter

ρ = min{(3q − 1)− 3, 3q − 2} = 3q − 4.

In the fourth case when q is odd and (−3)(n−1)/4 6≡ 1 (mod n), S6 has param-
eters λ1 = 2, λ2 = 3, hence the corresponding DSS has parameter

ρ = min{(3q − 1)− 2, 3q − 3} = 3q − 3,

which is perfect. 2

Example 13 (a) Let n = 37, q = 3. Now 2 is a primitive element of Z37,
and (−3)9 = 1 (mod 37). Thus the DSS from Theorem 12 has ρ = 4, and the
three blocks Qi are

{1, 27, 26, 36, 10, 11}, {4, 34, 30, 33, 3, 7}, {16, 25, 9, 21, 12, 28}.
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(b) Let n = 73, q = 6. Now 5 is a primitive element of Z73, and (−3)18 = −1 (mod 73).
Thus the DSS from Theorem 12 has ρ = 14, and the three blocks Qi are

{1, 9, 8, 72, 64, 65}, {25, 6, 54, 48, 67, 19}, {41, 4, 36, 32, 69, 37},

{3, 27, 24, 70, 46, 49}, {2, 18, 16, 71, 55, 57}, {50, 12, 35, 23, 61, 38}.

(c) Let n = 109, q = 9. 6 is a primitive element of Z109. Then (−3)27 = −1 (mod 109).
Thus the DSS with ρ = 24 from Theorem 12 is perfect, and the nine sets Qi

are

{1, 64, 63, 108, 45, 46}, {36, 15, 88, 73, 94, 21}, {97, 104, 7, 12, 5, 102},

{4, 38, 34, 105, 71, 75}, {35, 60, 25, 74, 49, 84}, {61, 89, 28, 48, 20, 81},

{16, 43, 27, 93, 66, 82}, {31, 22, 100, 78, 87, 9}, {26, 29, 3, 83, 80, 106}.

(d) Let n = 193, q = 16. Now 5 is a primitive element of Z193, and (−3)48 = 1 (mod 193).
Thus the DSS from Theorem 12 has ρ = 42.

3 DSS and cyclotomic numbers

For an integer e, let n be an odd prime such that e|(n − 1), and let α be a
primitive element in GF (n). Then the eth cyclotomic classes Ce

0 , Ce
1 , . . ., Ce

e−1

are defined by

Ce
i = {αt | t ≡ i (mod e)} for 0 ≤ i ≤ e− 1.

In other words, Ce
i are cosets of the subgroup Ce

0 of eth powers in GF (n)∗. We
calculate the subscripts of Ce

i modulo e, so that if x ∈ Ce
i and y ∈ Ce

j , then

xy ∈ Ce
i+j. We note that −1 ∈ Ce

0 if and only if 2e|(n−1), since −1 = α(n−1)/2

is an eth power if and only if (n− 1)/2 ≡ 0 (mod e). For a given n and e, the
cyclotomic numbers (of order e) are defined as follows:

(i, j)e = |{(x, y) | x ∈ Ce
i , y ∈ Ce

j , x = y − 1}|.

These numbers are important for the construction of difference sets in the
additive group G of GF (n) by taking suitable unions of cyclotomic classes.
Details are given in [1]. We pick up the most important special case to con-
struct DSS later on, where one uses just the cyclotomic class Ce

0 .

Lemma 14 [1]. For positive integers e and f , let n = ef+1 be a prime power.
Then D = Ce

0 is a difference set in G (with parameters (n, f, (f − 1)/e)) if
and only if e is even, f is odd and (i, 0)e = (f − 1)/e for 0 ≤ i ≤ e− 1.
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In this section we generalize some of the constructions from Section 2 by using
more general cyclotomic cosets instead of the set of quadratic residues Q. For
this purpose, we will use partitions of the set D = Ce

0 . (Note that D = Q for
e = 2). Throughout this section, we assume that n is a prime. Note that for
any prime n = ef + 1 D is a relative difference set: the multi-set of f(f − 1)
differences

{x− y (mod n) | x, y ∈ D, x 6= y} = {c(αt − 1) | c ∈ Ce
0 , 1 ≤ t < f}

contains every z ∈ Ce
i exactly (i, 0)e times for each i. Equivalently, the cyclic

1-(n, f, f) design D∗ consisting of the cyclic shifts of D modulo n is a partially
balanced design such that any pair x, y ∈ Zn, x 6= y occurs in exactly (i, 0)e

blocks of D∗ whenever x − y ∈ Ce
i . We note that if e is even and f is odd

then −1 does not belong to Ce
0 but Ce

` , where ` = (n − 1)/2. Then (i, j)e =
(j + `, i + `)e. Thus (i, 0)e = (i + `, 0)e since (i, j)e = (−i, j − i)e.

Assume that |D| = mq (thus, n = emq + 1). We want to partition D into q
disjoint subsets of size m that will be the blocks of a regular DSS. Let Dm be
a subgroup of Ce

0 of order m,

Dm = Ceq
0 = {αeqt | 0 ≤ t < e}.

Then D is partitioned into q disjoint cosets of Dm:

D = Dm ∪ (Dmαe) ∪ . . . ∪ (Dmαe(q−1)) = Ceq
0 ∪ Ceq

e ∪ . . . ∪ Ceq
e(q−1).

We consider the DSS with q blocks of size m

Q0 = Dm, Q1 = Dmαe, . . . , Qq−1 = Dmα(q−1)e.

Let G be the group of transformations φ : GF (n) −→ GF (n) of the form

φ(x) = cx + b (mod n); c ∈ Ce
0 , b ∈ GF (n).

The group G is of order n(n− 1)/e and contains the cyclic group Zn and the
multiplicative group D as subgroups. The group G partitions the 2-subsets of
Zn into e orbits: each orbit consists of all pairs {x, y} such that x − y ∈ Ce

i

for 0 ≤ i < e.

The orbit DG
m of Dm under G consists of |G|/m = nq subsets of size m. The

collection ∆ = DG
m is a cyclic design with base blocks Q0, Q1, . . . , Qq−1. Since

the group G has q orbits on the 2-subsets of Zn, ∆ is a partially balanced
design with q classes: each pair x, y such that x− y ∈ Ce

i occurs in λi blocks
of ∆ (for some λi) for 0 ≤ i < e.

Let Sm be the subset of GF (n) defined as follows.

Sm = {αeqi − 1 | 1 ≤ i ≤ m− 1}.
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Then the multi-set of differences

{x− y (mod n) | x, y ∈ Dm, x 6= y}

equals

{sαeqi (mod n) | s ∈ Sm, 0 ≤ i < m}.
Thus each λi depends on Sm and (h, 0)eq is the number of s such that s ∈ Ceq

h .
In addition, we have

Ce
i = Ceqi ∪ Ceqi+e ∪ Ceqi+2e ∪ . . . ∪ Ceqi+(q−1)e,

thus

λi =
q−1∑
j=0

(i + je, 0)eq.

It follows that the collection {Qi}q−1
i=0 is a DSS such that the multi-set of

differences (1) contains every z ∈ Ce
i exactly (i, 0)e −

∑q−1
j=0(i + je, 0)eq times

for 0 ≤ i < e.

Thus, we have the following theorem.

Theorem 15 For positive integers e, m and q, let n = emq + 1 be a prime.
The sets

Q0 = Ceq
0 , Q1 = Ceq

e , Q2 = Ceq
2e , . . . , Qq−1 = Ceq

(q−1)e

form a regular DSS with parameters (n,m, q, ρ), where

ρ = min{(i, 0)e −
q−1∑
j=0

(i + je, 0)eq | 0 ≤ i < e}.

In particular, if (i, 0)e −
∑q−1

j=0(i + je, 0)eq is constant for each i, then the DSS
is perfect, where ρ = m(q − 1)/e.

Example 16 (a) Let n = 73, e = 3, q = 2, m = 12. We use 5 as a primitive
element of Z73. Then

(0, 0)3 = 8, (1, 0)3 = 6, (2, 0)3 = 9,

(0, 0)6 = 2, (1, 0)6 = 2, (2, 0)6 = 3,

(3, 0)6 = 2, (4, 0)6 = 2, (5, 0)6 = 0.

Thus the DSS from Theorem 15 has ρ = 2, and the blocks Qi of size 12 are

{1, 3, 9, 27, 8, 24, 72, 70, 64, 46, 65, 49}, {52, 10, 30, 17, 51, 7, 21, 63, 43, 56, 22, 66}.
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(b) Let n = 109, e = 3, q = 2, m = 18. We use 6 as a primitive element. Then
the DSS with ρ = 6 is perfect since

(0, 0)3 = 11, (1, 0)3 = 10, (2, 0)3 = 14,

(0, 0)6 = 2, (1, 0)6 = 0, (2, 0)6 = 2,

(3, 0)6 = 3, (4, 0)6 = 4, (5, 0)6 = 6.

Example 17 (a) Let n = 73, e = 4, q = 3, m = 6. We use 5 as a primitive
element of Z73. Then

(0, 0)4 = 5, (1, 0)4 = 6, (2, 0)4 = 4, (3, 0)4 = 2

(0, 0)12 = 2, (1, 0)12 = 0, (2, 0)12 = 0, (3, 0)12 = 0

(4, 0)12 = 0, (5, 0)12 = 0, (6, 0)12 = 0, (7, 0)12 = 0

(8, 0)12 = 1, (9, 0)12 = 2, (10, 0)12 = 0, (11, 0)12 = 0.

Thus the DSS from Theorem 15 has ρ = 2, and its blocks Qi of size 6 are

{1, 9, 8, 72, 64, 65}, {41, 4, 36, 32, 69, 37}, {2, 18, 16, 71, 55, 57}.

(b) Let n = 769, e = 4, q = 3, m = 64. We use 11 as a primitive element.
Then the DSS with ρ = 32 is perfect since

(0, 0)4 = 38, (1, 0)4 = 48, (2, 0)4 = 51, (3, 0)4 = 54

(0, 0)12 = 0, (1, 0)12 = 6, (2, 0)12 = 9, (3, 0)12 = 6

(4, 0)12 = 4, (5, 0)12 = 4, (6, 0)12 = 6, (7, 0)12 = 10

(8, 0)12 = 2, (9, 0)12 = 6, (10, 0)12 = 4, (11, 0)12 = 6.
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