Difference Systems of Sets and Cyclotomy

Yukiyasu Mutoh ${ }^{\text {a,1 }}$
${ }^{\text {a }}$ Graduate School of Information Science, Nagoya University, Nagoya, Aichi 464-8601, Japan, yukiyasu@jim.math.cm.is.nagoya-u.ac.jp
Vladimir D. Tonchev ${ }^{\mathrm{b}, *, 2}$
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931, USA, tonchev@mtu.edu

Abstract

Difference Systems of Sets (DSS) are combinatorial configurations that arise in connection with code synchronization. A method for the construction of DSS from partitions of cyclic difference sets was introduced in [6] and applied to cyclic difference sets $(n,(n-1) / 2,(n-3) / 4)$ of Paley type, where $n \equiv 3(\bmod 4)$ is a prime number. This paper develops similar constructions for prime numbers $n \equiv 1(\bmod 4)$ that use partitions of the set of quadratic residues, as well as more general cyclotomic classes.

Key words: difference set, cyclotomic class, code synchronization 1991 MSC: 05B, 94B

1 Introduction

A Difference System of Sets (DSS) with parameters $\left(n, \tau_{0}, \ldots, \tau_{q-1}, \rho\right)$ is a collection of q disjoint subsets $Q_{i} \subseteq\{1,2, \ldots, n\},\left|Q_{i}\right|=\tau_{i}, 0 \leq i \leq q-1$, such that the multi-set

$$
\begin{equation*}
\left\{a-b \quad(\bmod n) \mid a \in Q_{i}, b \in Q_{j}, 0 \leq i, j<q, i \neq j\right\} \tag{1}
\end{equation*}
$$

[^0]contains every number $i, 1 \leq i \leq n-1$ at least ρ times. A DSS is perfect if every number $i, 1 \leq i \leq n-1$ is contained exactly ρ times in the multi-set (1). A DSS is regular if all subsets Q_{i} are of the same size: $\tau_{0}=\tau_{1}=\ldots=\tau_{q-1}=m$. We use the notation (n, m, q, ρ) for a regular DSS on n points with q subsets of size m.

Difference systems of sets were introduced by V. Levenshtein [4] (see also [5]) and were used for the construction of codes that allow for synchronization in the presence of errors. A q-ary code of length n is a subset of the set F_{q}^{n} of all vectors of length n over $F_{q}=\{0,1, \ldots, q-1\}$. If q is a prime power, we often identify F_{q} with a finite field of order q, in which case $i(0<i \leq q-1)$ stands for the i th power of a primitive element. A linear q-ary code (q a prime power), is a linear subspace of F_{q}^{n}. If $x=x_{1} \cdots x_{n}, y=y_{1} \cdots y_{n} \in F_{q}^{n}$, and $0 \leq i \leq n-1$, the i th joint of x and y is defined as $T_{i}(x, y)=x_{i+1} \cdots x_{n} y_{1} \cdots y_{i}$. In particular, $T_{i}(x, x)$ is a cyclic shift of x. The comma-free index $\rho=\rho(C)$ of a code $C \subseteq F_{q}^{n}$ is defined as

$$
\rho=\min d\left(z, T_{i}(x, y)\right)
$$

where the minimum is taken over all $x, y, z \in C$ and all $i=1, \ldots, n-1$, and d is the Hamming distance between vectors in F_{q}^{n}. The comma-free index $\rho(C)$ allows one to distinguish a code word from a joint of two code words (and hence provides for synchronization of code words) provided that at most $\lfloor\rho(C) / 2\rfloor$ errors have occurred in the given code word [3].

Since the zero vector belongs to any linear code, the comma-free index of a linear code is zero. Levenshtein [4] gave the following construction of comma-free codes of index $\rho>0$ obtained as cosets of linear codes, that utilizes difference systems of sets. Given a $\operatorname{DSS}\left\{Q_{0}, \ldots, Q_{q-1}\right\}$ with parameters $\left(n, \tau_{0}, \ldots, \tau_{q-1}, \rho\right)$, define a linear q-ary code $C \subseteq F_{q}^{n}$ of dimension $n-r$, where

$$
r=\sum_{i=0}^{q-1}\left|Q_{i}\right|,
$$

whose information positions are indexed by the numbers not contained in any of the sets Q_{0}, \ldots, Q_{q-1}, and having all redundancy symbols equal to zero. Replacing in each vector $x \in C$ the positions indexed by Q_{i} with the symbol i ($0 \leq i \leq q-1$), yields a coset C^{\prime} of C that has a comma-free index at least ρ.

This application of DSS to code synchronization requires that the number

$$
r=r_{q}(n, \rho)=\sum_{j=0}^{q-1}\left|Q_{i}\right|
$$

is as small as possible.

Levenshtein [4] proved the following lower bound on $r_{q}(n, \rho)$:

$$
\begin{equation*}
r_{q}(n, \rho) \geq \sqrt{\frac{q \rho(n-1)}{q-1}} \tag{2}
\end{equation*}
$$

with equality if and only if the DSS is perfect and regular.
In [6], Tonchev introduced a method for the construction of DSS from partitions of cyclic difference sets. This method was applied to the $(n,(n-1) / 2,(n-$ $3) / 4$) difference set of Paley (or quadratic residues) type, where n is any prime congruent to 3 modulo 4 . In this paper, the method from [6] is extended to primes $n \equiv 1(\bmod 4)$ by using partitions of the set of quadratic residues modulo n (Section 2), or partitions defined by more general cyclotomic classes (Section 3). Explicit constructions of infinite series of regular DSS are given for $2 \leq m \leq 6$ in Section 2. A general construction for arbitrary m based on cyclotomic classes is described in Section 3.

2 DSS and quadratic residues

Let $D=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a (v, k, λ) difference set (cf. [1], [2], [7]), that is, a subset of k residues modulo v such that every positive residue modulo v occurs exactly λ times in the multi-set of differences

$$
\left\{x_{i}-x_{j} \quad(\bmod v) \mid x_{i}, x_{j} \in D, x_{i} \neq x_{j}\right\} .
$$

Then the collection of singletons $Q_{0}=\left\{x_{1}\right\}, \ldots, Q_{k-1}=\left\{x_{k}\right\}$ is a perfect regular DSS with parameters ($n=v, m=1, q=k, \rho=\lambda$).

This simple construction was generalized in [6] by replacing the collection of singletons of a given cyclic difference set by any partition such that the parts are base blocks of a cyclic 2-design. More precisely, the following statement holds.

Lemma 1 [6] Let $D \subseteq\{1,2, \ldots, n\},|D|=k$, be a cyclic (n, k, λ) difference set. Let D be partitioned into q disjoint subsets Q_{0}, \ldots, Q_{q-1}, and let Δ be the cyclic design having as a collection of blocks the union of orbits of the base blocks Q_{0}, \ldots, Q_{q-1} under the cyclic group C_{n}. Assume that every two points are contained in at most λ_{1} blocks of Δ. Then $\left\{Q_{i}\right\}_{i=0}^{q-1}$ is a DSS with parameters $\left(n, \tau_{0}, \ldots, \tau_{q-1}, \rho=\lambda-\lambda_{1}\right)$, where $\tau_{i}=\left|Q_{i}\right|, i=0, \ldots, q-1$. The $D S S\left\{Q_{i}\right\}_{i=0}^{q-1}$ is perfect if and only if Δ is a pairwise balanced design with every two points occurring together in exactly λ_{1} blocks.

A class of new DSS were found in [6] from partitions of the $(n,(n-1) / 2,(n-$ $3) / 4$) cyclic difference set of quadratic-residue (QR) type, where $n=4 t+3$ is
prime. The partitions were defined by a subgroup of the multiplicative group Q of order $(n-1) / 2$ consisting of all quadratic residues and its cosets in Q.

It is the aim of this section to present similar constructions for the case of prime numbers n of the form $n=4 t+1$. We use again partitions of the set Q of quadratic residues modulo n. The major difference between the cases $n=4 t+3$ or $n=4 t+1$ is that if $n \equiv 3(\bmod 4)$ the set Q is a cyclic difference set (with $\lambda=(n-3) / 4=t)$, while if $n \equiv 1(\bmod 4) Q$ is a relative difference set: the multi-set of $2 t(2 t-1)$ differences

$$
\{x-y \quad(\bmod n) \mid x, y \in Q, x \neq y\}
$$

contains every $z \in Q$ exactly $t-1$ times, and every $z \notin Q$ exactly t times. Equivalently, the cyclic 1- $(4 t+1,2 t, 2 t)$ design Q^{*} consisting of the cyclic shifts of Q modulo n is a partially balanced design such that any pair $x, y \in Z_{n}, x \neq$ y occurs in exactly $t-1$ blocks of Q^{*} whenever $x-y \in Q$, and in exactly t blocks if $x-y \notin Q$.

Assume that $|Q|=m q$ (thus, $n=2 m q+1$). We want to partition Q into q disjoint subsets of size m that will be the blocks of a regular DSS. Let α be a primitive element of the finite field of order $n, G F(n)$. Then

$$
Q=\left\{\alpha^{2 i} \mid 1 \leq i \leq(n-1) / 2\right\} .
$$

Let D_{m} be a subgroup of Q of order m,

$$
D_{m}=\left\{\alpha^{2 q i} \mid 1 \leq i \leq m\right\} .
$$

Then Q is partitioned into q disjoint cosets of D_{m} :

$$
Q=D_{m} \cup\left(D_{m} \alpha^{2}\right) \cup \ldots \cup\left(D_{m} \alpha^{2(q-1)}\right) .
$$

We consider the DSS having as blocks the following subsets of size m :

$$
Q_{0}=D_{m}, Q_{1}=D_{m} \alpha^{2}, \ldots, Q_{q-1}=D_{m} \alpha^{2(q-1)}
$$

Let G be the group of transformations $\phi: G F(n) \longrightarrow G F(n)$, where

$$
\phi(x)=a^{2} x+b(\bmod n) ; a, b \in G F(n), a \neq 0 .
$$

The group G is of order $n(n-1) / 2$ and contains the cyclic group Z_{n} and the multiplicative group Q as subgroups. The collection of (unordered) 2-subsets of Z_{n} is partitioned into two orbits under the action of G : one orbit consists of all pairs $\{x, y\}$ such that $x-y \in Q$, and the second orbit contains the pairs $\{x, y\}$ such that $x-y \notin Q$.

Note that D_{m} is a subgroup of Q of order m, Q acts regularly on itself, and n is prime. Thus, the stabilizer of D_{m} in G is of order m and the orbit D_{m}^{G} of
D_{m} under G consists of $|G| / m=n q$ subsets of size m. The collection $\Delta=D_{m}^{G}$ is a cyclic design with base blocks $Q_{0}, Q_{1}, \ldots, Q_{q-1}$. Since the group G has two orbits on the 2-subsets of Z_{n}, Δ is a partially balanced design with two classes: each pair x, y such that $x-y \in Q$ occurs in λ_{1} blocks of Δ (for some λ_{1}), while each pair x, y such that $x-y \notin Q$ occurs in λ_{2} blocks (for some λ_{2}). It follows that the collection $\left\{Q_{i}\right\}_{i=0}^{q-1}$ is a DSS such that the multi-set of differences (1) contains every $z \in Q$ exactly $t-1-\lambda_{1}$ times, and every $z \notin Q$ exactly $t-\lambda_{2}$ times. Thus, we have the following.

Theorem 2 The collection $\left\{Q_{i}\right\}_{i=0}^{q-1}$ is a DSS with parameters (n, m, q, ρ), where

$$
\begin{equation*}
\rho=\min \left(t-1-\lambda_{1}, t-\lambda_{2}\right) . \tag{3}
\end{equation*}
$$

Let S_{m} be a subset of $G F(n)$ defined as follows:

$$
S_{m}=\left\{\alpha^{2 q i}-1 \mid 1 \leq i \leq m-1\right\},
$$

where $m=(n-1) /(2 q)$. Then the multi-set of differences

$$
\left\{x-y \quad(\bmod n) \mid x, y \in D_{m}, x \neq y\right\}
$$

coincides with the multi-set

$$
\left\{s \alpha^{2 q i}(\bmod n) \mid s \in S_{m}, 1 \leq i \leq m\right\} .
$$

It follows that λ_{1} is equal to the number of quadratic residues in S_{m}, while λ_{2} is equal to the number of quadratic non-residues in S_{m}. Thus, the parameters λ_{1} and λ_{2} of Δ can be determined by counting the quadratic residues (resp. non-residues) in S_{m}. Therefore, we will often refer to λ_{1}, λ_{2} as parameters of S_{m}.

Note that $\lambda_{1}+\lambda_{2}=m-1$ and (3) imply the following lower bound on ρ in terms of m and q :

$$
\rho \geq \frac{m(q-2)}{2}
$$

The next theorems utilize the construction of Theorem 2 for subgroups of relatively small order m. Applying this construction with a subgroup D_{m} of Q of order $m=2$ yields the following result.

Theorem 3 Let $n=4 q+1$ be a prime. The cosets of the subgroup $Q_{0}=\left\langle\alpha^{2 q}\right\rangle$ of order 2 in Q

$$
\begin{equation*}
Q_{0}=\left\{\alpha^{2 q}=-1, \alpha^{4 q}=1\right\}, Q_{1}=\left\{\alpha^{2 q+2}, \alpha^{2}\right\}, \ldots, Q_{q-1}=\left\{\alpha^{4 q-2}, \alpha^{2(q-1)}\right\} \tag{4}
\end{equation*}
$$

form a regular DSS with parameters ($n, 2, q, \rho$), where

$$
\rho= \begin{cases}q-2 \text { if } n \equiv 1 \quad(\bmod 8), \tag{5}\\ q-1 \text { if } n \equiv 5 & (\bmod 8)\end{cases}
$$

Proof. The difference of the two elements of $Q_{0}=D_{2}=\left\{\alpha^{2 q}=-1, \alpha^{4 q}=1\right\}$ is ± 2 modulo n. Since $n \equiv 1(\bmod 4),-1 \in Q$. In addition, $2 \in Q$ by the QRL if $n \equiv \pm 1(\bmod 8)$, and $2 \notin Q$ otherwise. Since $n=4 q+1$, then either $n \equiv 1$ $(\bmod 8)$ or $n \equiv 5(\bmod 8)$. In the case when $n \equiv 1(\bmod 8)$ the partially balanced cyclic design Δ with base blocks (4), i.e., D_{2} and its cosets in Q, has parameters $\lambda_{1}=1, \lambda_{2}=0$, hence the corresponding DSS has parameter

$$
\rho=\min \{(q-1)-1, q-0\}=q-2 .
$$

In the remaining case, $n \equiv 5(\bmod 8)$, the parameters of Δ are $\lambda_{1}=0, \lambda_{2}=1$, and

$$
\rho=\min \{(q-1)-0, q-1\}=q-1 .
$$

Note 1 The DSS of Theorem 3 in the case $n \equiv 5(\bmod 8)$ is perfect, hence optimal with respect to the Levenshtein bound (2). If $n \equiv 1(\bmod 8)$, we have a DSS with

$$
r_{q}(n, \rho)=r_{q}(n, q-2)=(n-1) / 2=2 q
$$

and the right-hand side of the inequality (2) is

$$
\sqrt{\frac{q(q-2)(4 q)}{q-1}}=2 q \sqrt{\frac{q-2}{q-1}} .
$$

Thus, this DSS is asymptotically optimal.
Example 4 (a) Let $n=13, q=3$. We use 2 as a primitive element of Z_{13}. The DSS with $\rho=2$ from Theorem 3 is perfect and consists of the following three pairs Q_{i} :

$$
\{1,12\},\{4,9\},\{3,10\}
$$

(b) Let $n=17, q=4$. Now 3 is a primitive element of Z_{17}. The DSS from Theorem 3 has $\rho=2$ and consists of the following four pairs Q_{i} :

$$
\{1,16\},\{9,8\},\{13,4\},\{15,2\} .
$$

Next we apply this construction by using subgroups of Q of order $m=3,4,5$ and 6 .

Theorem 5 Let $n=6 q+1$ be a prime, where q is an even integer. The cosets of the subgroup $Q_{0}=\left\langle\alpha^{2 q}\right\rangle$ of order 3 in Q
$Q_{0}=\left\{\alpha^{2 q}, \alpha^{4 q}, \alpha^{6 q}=1\right\}, Q_{1}=\left\{\alpha^{2 q+2}, \alpha^{4 q+2}, \alpha^{2}\right\}, \ldots, Q_{q-1}=\left\{\alpha^{4 q-2}, \alpha^{6 q-2}, \alpha^{2 q-2}\right\}$
form a regular DSS with parameters ($n, 3, q, \rho$), where

$$
\rho= \begin{cases}3 q / 2-3 \text { if }(-3)^{(n-1) / 4} \equiv 1 & (\bmod n), \tag{6}\\ 3 q / 2-2 \text { if }(-3)^{(n-1) / 4} \not \equiv 1 & (\bmod n) .\end{cases}
$$

Proof. Let $\varepsilon=\alpha^{(n-1) / 3}$ be a primitive cubic root of unity in $G F(n)$. Then $(\varepsilon-$ $1)^{2}=-3 \varepsilon$. Since ε is a fourth power, -3 is a square, and $(-3)^{(n-1) / 4} \equiv 1$, or $-1(\bmod n)$. In addition, $\varepsilon-1$ belongs to Q if $(-3)^{(n-1) / 4} \equiv 1(\bmod n)$. Similarly, $\varepsilon^{2}-1$ belongs to Q if $\varepsilon-1$ belongs to Q. It follows that $S_{3}=\left\{\varepsilon-1, \varepsilon^{2}-1\right\}$. In the case when $(-3)^{(n-1) / 4} \equiv 1(\bmod n)$, the parameters of the cyclic design Δ are $\lambda_{1}=2, \lambda_{2}=0$, hence by (3)

$$
\rho=\min \{(3 q / 2-1)-2,3 q / 2-0\}=3 q / 2-3 .
$$

In the remaining case, $(-3)^{(n-1) / 4} \not \equiv 1(\bmod n)$, the parameters of S_{3} are $\lambda_{1}=$ $0, \lambda_{2}=2$, and

$$
\rho=\min \{(3 q / 2-1)-0,3 q / 2-2\}=3 q / 2-2 .
$$

Example 6 (a) Let $n=13, q=2$. We use 2 as a primitive element of Z_{13}. Then $(-3)^{3} \not \equiv 1(\bmod 13)$. Thus the DSS from Theorem 5 has $\rho=1$, and the two blocks are the cyclic group $Q_{0}=\{1,3,9\}=\left\langle 3=2^{4}\right\rangle \simeq C_{3}$ and $Q_{1}=4 Q_{0}=\{4,12,10\}$.
(b) Let $n=37, q=6$. We use 2 as a primitive element of Z_{37}. Then $(-3)^{9} \equiv 1(\bmod 37)$. Thus the DSS from Theorem 5 has $\rho=6$, and the six blocks Q_{i} are

$$
\{1,26,10\},\{4,30,3\},\{16,9,12\},\{27,36,11\},\{34,33,7\},\{25,21,28\}
$$

Note that Q_{0} is a cyclic subgroup of Q of order 3 and the remaining blocks are the cosets of Q_{0} in Q.

Theorem 7 Let $n=8 q+1$ be a prime. The cosets of the subgroup $Q_{0}=\left\langle\alpha^{2 q}\right\rangle$ of order 4 in Q

$$
\begin{aligned}
Q_{0} & =\left\{\alpha^{2 q}, \alpha^{4 q}, \alpha^{6 q}, \alpha^{8 q}=1\right\}, \\
Q_{1} & =\left\{\alpha^{2 q+2}, \alpha^{4 q+2}, \alpha^{6 q+2}, \alpha^{2}\right\}, \\
& \vdots \\
Q_{q-1} & =\left\{\alpha^{4 q-2}, \alpha^{6 q-2}, \alpha^{8 q-2}, \alpha^{2 q-2}\right\}
\end{aligned}
$$

form a regular DSS with parameters ($n, 4, q, \rho$), where

$$
\rho=\left\{\begin{array}{l}
2 q-4 \text { if } q \text { is even and } 2 \text { is a biquadratic of } n, \text { or } \tag{7}\\
q \text { is odd and } 2 \text { is a non-biquadratic of } n, \\
2 q-2 \text { if } q \text { is even and } 2 \text { is a non-biquadratic of } n, \text { or } \\
q \text { is odd and } 2 \text { is a biquadratic of } n .
\end{array}\right.
$$

Proof. Let $i=\alpha^{(n-1) / 4}$ be a primitive quartic root of unity in $G F(n)$. Then $(i-1)^{2}=-2 i$ and $S_{4}=\{i-1,-2,-i-1\}$ holds. Since $n-1 \equiv 0(\bmod 8)$, -1 is a fourth power. Note that i is a fourth power if q is even. Otherwise, i is not a fourth power but a square. Thus, $i-1$ is a square if q is even and 2 is a biquadratic of n, or if q is odd and 2 is a non-biquadratic of n. In the first case, S_{4} has parameters $\lambda_{1}=3, \lambda_{2}=0$, hence the corresponding DSS has parameter

$$
\rho=\min \{(2 q-1)-3,2 q-0\}=2 q-4 .
$$

In the remaining case, the parameters of S_{4} are $\lambda_{1}=1, \lambda_{2}=2$, and

$$
\rho=\min \{(2 q-1)-1,2 q-2\}=2 q-2 .
$$

Note 2 The DSS of Theorem 7 is perfect in the case when q is even and 2 is a non-biquadratic of n, and when q is odd and 2 is a biquadratic of n.

Example 8 (a) Let $n=17, q=2$. We use 3 as a primitive element of Z_{17}. We have $2 \equiv 3^{2}(\bmod 17)$ and 2 is not a biquadratic of 17 . Thus the DSS with $\rho=2$ from Theorem 7 is perfect, and the two blocks Q_{i} are

$$
\{1,13,16,4\},\{9,15,8,2\} .
$$

(b) Let $n=73, q=9$. Now 5 is a primitive element of Z_{73} and 2 is a biquadratic of 73 . Thus the DSS with $\rho=16$ from Theorem 7 is perfect, and the nine blocks Q_{i} are

$$
\begin{gathered}
\{1,27,72,46\},\{25,18,48,55\},\{41,12,32,61\},\{3,8,70,65\},\{2,54,71,19\}, \\
\{50,36,23,37\},\{9,24,64,49\},\{6,16,67,57\},\{4,35,69,38\} .
\end{gathered}
$$

(c) Let $n=41, q=5$. Now 6 is a primitive element of Z_{41}, and 2 is not a biquadratic of 41. Thus the DSS from Theorem 7 has $\rho=6$, and the five blocks Q_{i} are

$$
\{1,32,40,9\},\{36,4,5,37\},\{25,21,16,20\},\{39,18,2,23\},\{10,33,31,8\} .
$$

(d) Let $n=113, q=14$. Now 3 is a primitive element of Z_{13}, and 2 is a biquadratic of 113. Thus the DSS from Theorem 7 has $\rho=24$, and the 14 blocks Q_{i} are

$$
\begin{gathered}
\{1,98,112,15\},\{9,91,104,22\},\{81,28,32,85\},\{51,26,62,87\},\{7,8,106,105\}, \\
\{63,72,50,41\},\{2,83,111,30\},\{18,69,95,44\},\{49,56,64,57\},\{102,52,11,61\}, \\
\{14,16,99,97\},\{13,31,100,82\},\{4,53,109,60\},\{36,25,77,88\} .
\end{gathered}
$$

Theorem 9 Let $n=10 q+1$ be a prime, where q is an even integer. The cosets of the subgroup $Q_{0}=\left\langle\alpha^{2 q}\right\rangle$ of order 5 in Q

$$
\begin{aligned}
Q_{0} & =\left\{\alpha^{2 q}, \alpha^{4 q}, \alpha^{6 q}, \alpha^{8 q}, \alpha^{10 q}=1\right\} \\
Q_{1} & =\left\{\alpha^{2 q+2}, \alpha^{4 q+2}, \alpha^{6 q+2}, \alpha^{8 q+2}, \alpha^{2}\right\}, \\
& \vdots \\
Q_{q-1} & =\left\{\alpha^{4 q-2}, \alpha^{6 q-2}, \alpha^{8 q-2}, \alpha^{10 q-2}, \alpha^{2 q-2}\right\}
\end{aligned}
$$

form a regular DSS with parameters ($n, 5, q, \rho$), where

$$
\begin{equation*}
\rho=5 q / 2-3 \quad \text { if } 5^{(n-1) / 4} \not \equiv 1 \quad(\bmod n) . \tag{8}
\end{equation*}
$$

Proof. Let $\varepsilon=\alpha^{(n-1) / 5}$ be a primitive fifth root of unity in $G F(n)$. For $x \in G F(n)$, we have

$$
x^{4}+x^{3}+x^{2}+x+1=(x-\varepsilon)\left(x-\varepsilon^{2}\right)\left(x-\varepsilon^{3}\right)\left(x-\varepsilon^{4}\right):
$$

hence for $x=1$

$$
\begin{equation*}
5=(1-\varepsilon)\left(1-\varepsilon^{2}\right)\left(1-\varepsilon^{3}\right)\left(1-\varepsilon^{4}\right)=\varepsilon^{2}(\varepsilon-1)^{2}\left(\varepsilon^{2}-1\right)^{2} . \tag{9}
\end{equation*}
$$

Thus 5 is a square, and $5^{(n-1) / 4} \equiv 1$, or $-1(\bmod n)$. By (9) we see that 5 is a fourth power if $\varepsilon+1$ is a square, since ε is a square. By (8) 5 is not a fourth power, that is, $\varepsilon+1$ does not belong to Q. Thus either $\varepsilon-1$ or $\varepsilon^{2}-1$ is a square, and $S_{5}=\left\{\varepsilon-1, \varepsilon^{2}-1, \varepsilon^{3}-1, \varepsilon^{4}-1\right\}$ holds. In the case when $5^{(n-1) / 4} \not \equiv 1(\bmod n), S_{5}$ has parameters $\lambda_{1}=2, \lambda_{2}=2$, hence the corresponding DSS has parameter

$$
\rho=\min \{(5 q / 2-1)-2,5 q / 2-2\}=5 q / 2-3 .
$$

Example 10 Let $n=41, q=4$. We use 6 as a primitive element of Z_{41}. Then $5^{10} \not \equiv 1(\bmod 41)$. Thus the DSS from Theorem 9 has $\rho=7$, and the four blocks Q_{i} are

$$
\{1,10,18,16,37\},\{36,32,33,2,20\},\{25,4,40,31,23\},\{39,21,5,9,8\} .
$$

Note 3 If $n \equiv 1(\bmod 20)($ resp. $(\bmod 12))$ is a prime, then there is exactly one pair $(x, y) \in N \times N$ such that $n=x^{2}+4 y^{2}$. Then 5 (resp. -3) is a square in $G F(n)$, by the quadratic reciprocity law. In addition, 5 is a fourth power if and only if $y \equiv 0(\bmod 5)$ and -3 is a fourth power if $y \equiv 0(\bmod 3)$. Hence the value of ρ depends on whether the diophantine equation $x^{2}+36 y^{2}=n$ has solution in integers and (8) holds if the diophantine equation $x^{2}+100 y^{2}=n$ has no solution in integers. Similarly, it is known that 2 is a biquadratic of n if the diophantine equation $x^{2}+64 y^{2}=n$ has solution in integers.

Note 4 In the case $m=5$, either $S_{5} \subset Q$ or $S_{5} \cap Q=\emptyset$ if $5^{(n-1) / 4} \equiv 1(\bmod n)$. In the case when $S_{5} \subset Q$, i.e., $\varepsilon-1$ is a quadratic of n, S_{5} has parameters $\lambda_{1}=4, \lambda_{2}=0$, hence the corresponding DSS has parameter $\rho=5 q / 2-5$. In the remaining case, i.e., $\varepsilon-1$ is a non-quadratic of $n, S_{5} \cap Q=\emptyset$, the parameters of S_{5} are $\lambda_{1}=0, \lambda_{2}=4$, and $\rho=5 q / 2-4$.

Example 11 Let $n=101, q=10$. We use 2 as a primitive element of Z_{101}. Then $5^{25} \equiv 1(\bmod 101)$ and $\varepsilon-1=94 \equiv 2^{59}(\bmod 101)$, where $\varepsilon=95$ is a primitive fifth root of unity of Z_{101}. Thus the DSS from Note 4 has $\rho=21$, and the ten blocks Q_{i} are

$$
\begin{gathered}
\{1,95,36,87,84\},\{4,77,43,45,33\},\{16,5,71,79,31\},\{64,20,82,13,23\},\{54,80,25,52,92\} \\
\{14,17,100,6,65\},\{56,68,97,24,58\},\{22,70,85,96,30\},\{88,78,37,81,19\},\{49,9,47,21,76\} .
\end{gathered}
$$

Let $n=461, q=46$. We use 2 as a primitive element of Z_{461}. Then $5^{115} \equiv 1(\bmod 461)$ and $\varepsilon-1=87 \equiv 2^{218}(\bmod 461)$, where $\varepsilon=88$ is a primitive fifth root of unity of Z_{461}. Thus the DSS from Note 4 has $\rho=110$.

Theorem 12 Let $n=12 q+1$ be a prime. The cosets of the subgroup $Q_{0}=$ $\left\langle\alpha^{2 q}\right\rangle$ of order 6 in Q

$$
\begin{aligned}
Q_{0} & =\left\{\alpha^{2 q}, \alpha^{4 q}, \ldots, \alpha^{12 q}=1\right\}, \\
Q_{1} & =\left\{\alpha^{2 q+2}, \alpha^{4 q+2}, \ldots, \alpha^{2}\right\}, \\
& \vdots \\
Q_{q-1} & =\left\{\alpha^{4 q-2}, \alpha^{6 q-2}, \ldots, \alpha^{2 q-2}\right\}
\end{aligned}
$$

form a regular DSS with parameters ($n, 6, q, \rho$), where

$$
\rho=\left\{\begin{array}{lc}
3 q-6 \text { if } q \text { is even and }(-3)^{(n-1) / 4} \equiv 1 & (\bmod n), \tag{10}\\
3 q-5 \text { if } q \text { is odd and }(-3)^{(n-1) / 4} \equiv 1 & (\bmod n), \\
3 q-4 \text { if } q \text { is even and }(-3)^{(n-1) / 4} \not \equiv 1 & (\bmod n), \\
3 q-3 \text { if } q \text { is odd and }(-3)^{(n-1) / 4} \not \equiv 1 & (\bmod n)
\end{array}\right.
$$

Proof. Let $\varepsilon=\alpha^{(n-1) / 6}$ be a primitive 6 th root of unity in $G F(n)$. Then $(\varepsilon-1)^{2}\left(\varepsilon^{2}-1\right)^{2}=(\varepsilon-1)^{4}(\varepsilon+1)^{2}=-3$ since $\varepsilon^{2}-\varepsilon+1=0$. Thus -3 is a square by the QRL, and $(-3)^{(n-1) / 4} \equiv 1$, or $-1(\bmod n)$. In addition, $\varepsilon+1$ belongs to Q if $(-3)^{(n-1) / 4} \equiv 1(\bmod n)$. Thus if $(-3)^{(n-1) / 4} \not \equiv 1(\bmod n)$ then either $\varepsilon-1$ or $\varepsilon^{2}-1$ is a square. In the other case, if $(-3)^{(n-1) / 4} \equiv 1(\bmod n)$ then $\varepsilon-1$ and $\varepsilon^{2}-1$ are both squares since $(\varepsilon-1)^{2}=-\varepsilon=\alpha^{8 q}$. Thus $S_{6}=\left\{\varepsilon-1, \varepsilon^{2}-1, \varepsilon^{3}-1, \varepsilon^{4}-1, \varepsilon^{5}-1\right\}$ holds and $\varepsilon^{3}-1=-2$.

Since $n \equiv 1(\bmod 4),-1 \in Q$. In addition, $2 \in Q$ if $n \equiv \pm 1(\bmod 8)$, and $2 \notin Q$ otherwise. Since $n=4 q+1$, then either $n \equiv 1(\bmod 8)$ or $n \equiv 5$ $(\bmod 8)$. In the case when q is even and $(-3)^{(n-1) / 4} \equiv 1(\bmod n)$. Thus, S_{6} has parameters $\lambda_{1}=5, \lambda_{2}=0$, and the corresponding DSS has parameter

$$
\rho=\min \{(3 q-1)-5,3 q-0\}=3 q-6 .
$$

In the second case when q is odd and $(-3)^{(n-1) / 4} \equiv 1(\bmod n), S_{6}$ has parameters $\lambda_{1}=4, \lambda_{2}=1$, hence the corresponding DSS has parameter

$$
\rho=\min \{(3 q-1)-4,3 q-1\}=3 q-5 .
$$

In the third case when q is even and $(-3)^{(n-1) / 4} \not \equiv 1(\bmod n), S_{6}$ has parameters $\lambda_{1}=3, \lambda_{2}=2$, hence the corresponding DSS has parameter

$$
\rho=\min \{(3 q-1)-3,3 q-2\}=3 q-4 .
$$

In the fourth case when q is odd and $(-3)^{(n-1) / 4} \not \equiv 1(\bmod n), S_{6}$ has parameters $\lambda_{1}=2, \lambda_{2}=3$, hence the corresponding DSS has parameter

$$
\rho=\min \{(3 q-1)-2,3 q-3\}=3 q-3
$$

which is perfect.
Example 13 (a) Let $n=37, q=3$. Now 2 is a primitive element of Z_{37}, and $(-3)^{9}=1(\bmod 37)$. Thus the DSS from Theorem 12 has $\rho=4$, and the three blocks Q_{i} are

$$
\{1,27,26,36,10,11\},\{4,34,30,33,3,7\},\{16,25,9,21,12,28\} .
$$

(b) Let $n=73, q=6$. Now 5 is a primitive element of Z_{73}, and $(-3)^{18}=-1(\bmod 73)$. Thus the DSS from Theorem 12 has $\rho=14$, and the three blocks Q_{i} are

$$
\begin{gathered}
\{1,9,8,72,64,65\},\{25,6,54,48,67,19\},\{41,4,36,32,69,37\}, \\
\{3,27,24,70,46,49\},\{2,18,16,71,55,57\},\{50,12,35,23,61,38\} .
\end{gathered}
$$

(c) Let $n=109, q=9.6$ is a primitive element of Z_{109}. Then $(-3)^{27}=-1(\bmod 109)$. Thus the DSS with $\rho=24$ from Theorem 12 is perfect, and the nine sets Q_{i} are

$$
\begin{aligned}
& \{1,64,63,108,45,46\},\{36,15,88,73,94,21\},\{97,104,7,12,5,102\}, \\
& \{4,38,34,105,71,75\},\{35,60,25,74,49,84\},\{61,89,28,48,20,81\}, \\
& \{16,43,27,93,66,82\},\{31,22,100,78,87,9\},\{26,29,3,83,80,106\} .
\end{aligned}
$$

(d) Let $n=193, q=16$. Now 5 is a primitive element of Z_{193}, and $(-3)^{48}=1(\bmod 193)$. Thus the DSS from Theorem 12 has $\rho=42$.

3 DSS and cyclotomic numbers

For an integer e, let n be an odd prime such that $e \mid(n-1)$, and let α be a primitive element in $G F(n)$. Then the e th cyclotomic classes $C_{0}^{e}, C_{1}^{e}, \ldots, C_{e-1}^{e}$ are defined by

$$
C_{i}^{e}=\left\{\alpha^{t} \mid t \equiv i \quad(\bmod e)\right\} \quad \text { for } \quad 0 \leq i \leq e-1 .
$$

In other words, C_{i}^{e} are cosets of the subgroup C_{0}^{e} of e th powers in $G F(n)^{*}$. We calculate the subscripts of C_{i}^{e} modulo e, so that if $x \in C_{i}^{e}$ and $y \in C_{j}^{e}$, then $x y \in C_{i+j}^{e}$. We note that $-1 \in C_{0}^{e}$ if and only if $2 e \mid(n-1)$, since $-1=\alpha^{(n-1) / 2}$ is an e th power if and only if $(n-1) / 2 \equiv 0(\bmod e)$. For a given n and e, the cyclotomic numbers (of order e) are defined as follows:

$$
(i, j)_{e}=\left|\left\{(x, y) \mid x \in C_{i}^{e}, y \in C_{j}^{e}, x=y-1\right\}\right| .
$$

These numbers are important for the construction of difference sets in the additive group G of $G F(n)$ by taking suitable unions of cyclotomic classes. Details are given in [1]. We pick up the most important special case to construct DSS later on, where one uses just the cyclotomic class C_{0}^{e}.

Lemma 14 [1]. For positive integers e and f, let $n=e f+1$ be a prime power. Then $D=C_{0}^{e}$ is a difference set in G (with parameters $(n, f,(f-1) / e)$) if and only if e is even, f is odd and $(i, 0)_{e}=(f-1) /$ e for $0 \leq i \leq e-1$.

In this section we generalize some of the constructions from Section 2 by using more general cyclotomic cosets instead of the set of quadratic residues Q. For this purpose, we will use partitions of the set $D=C_{0}^{e}$. (Note that $D=Q$ for $e=2$). Throughout this section, we assume that n is a prime. Note that for any prime $n=e f+1 D$ is a relative difference set: the multi-set of $f(f-1)$ differences

$$
\{x-y \quad(\bmod n) \mid x, y \in D, x \neq y\}=\left\{c\left(\alpha^{t}-1\right) \mid c \in C_{0}^{e}, 1 \leq t<f\right\}
$$

contains every $z \in C_{i}^{e}$ exactly $(i, 0)_{e}$ times for each i. Equivalently, the cyclic $1-(n, f, f)$ design D^{*} consisting of the cyclic shifts of D modulo n is a partially balanced design such that any pair $x, y \in Z_{n}, x \neq y$ occurs in exactly $(i, 0)_{e}$ blocks of D^{*} whenever $x-y \in C_{i}^{e}$. We note that if e is even and f is odd then -1 does not belong to C_{0}^{e} but C_{ℓ}^{e}, where $\ell=(n-1) / 2$. Then $(i, j)_{e}=$ $(j+\ell, i+\ell)_{e}$. Thus $(i, 0)_{e}=(i+\ell, 0)_{e}$ since $(i, j)_{e}=(-i, j-i)_{e}$.

Assume that $|D|=m q$ (thus, $n=e m q+1$). We want to partition D into q disjoint subsets of size m that will be the blocks of a regular DSS. Let D_{m} be a subgroup of C_{0}^{e} of order m,

$$
D_{m}=C_{0}^{e q}=\left\{\alpha^{e q t} \mid 0 \leq t<e\right\} .
$$

Then D is partitioned into q disjoint cosets of D_{m} :

$$
D=D_{m} \cup\left(D_{m} \alpha^{e}\right) \cup \ldots \cup\left(D_{m} \alpha^{e(q-1)}\right)=C_{0}^{e q} \cup C_{e}^{e q} \cup \ldots \cup C_{e(q-1)}^{e q} .
$$

We consider the DSS with q blocks of size m

$$
Q_{0}=D_{m}, Q_{1}=D_{m} \alpha^{e}, \ldots, Q_{q-1}=D_{m} \alpha^{(q-1) e}
$$

Let G be the group of transformations $\phi: G F(n) \longrightarrow G F(n)$ of the form

$$
\phi(x)=c x+b(\bmod n) ; c \in C_{0}^{e}, b \in G F(n) .
$$

The group G is of order $n(n-1) / e$ and contains the cyclic group Z_{n} and the multiplicative group D as subgroups. The group G partitions the 2 -subsets of Z_{n} into e orbits: each orbit consists of all pairs $\{x, y\}$ such that $x-y \in C_{i}^{e}$ for $0 \leq i<e$.

The orbit D_{m}^{G} of D_{m} under G consists of $|G| / m=n q$ subsets of size m. The collection $\Delta=D_{m}^{G}$ is a cyclic design with base blocks $Q_{0}, Q_{1}, \ldots, Q_{q-1}$. Since the group G has q orbits on the 2 -subsets of Z_{n}, Δ is a partially balanced design with q classes: each pair x, y such that $x-y \in C_{i}^{e}$ occurs in λ_{i} blocks of Δ (for some λ_{i}) for $0 \leq i<e$.

Let S_{m} be the subset of $G F(n)$ defined as follows.

$$
S_{m}=\left\{\alpha^{e q i}-1 \mid 1 \leq i \leq m-1\right\} .
$$

Then the multi-set of differences

$$
\left\{x-y \quad(\bmod n) \mid x, y \in D_{m}, x \neq y\right\}
$$

equals

$$
\left\{s \alpha^{e q i} \quad(\bmod n) \mid s \in S_{m}, 0 \leq i<m\right\} .
$$

Thus each λ_{i} depends on S_{m} and $(h, 0)_{e q}$ is the number of s such that $s \in C_{h}^{e q}$. In addition, we have

$$
C_{i}^{e}=C^{e} q_{i} \cup C^{e} q_{i+e} \cup C^{e} q_{i+2 e} \cup \ldots \cup C^{e} q_{i+(q-1) e}
$$

thus

$$
\lambda_{i}=\sum_{j=0}^{q-1}(i+j e, 0)_{e q} .
$$

It follows that the collection $\left\{Q_{i}\right\}_{i=0}^{q-1}$ is a DSS such that the multi-set of differences (1) contains every $z \in C_{i}^{e}$ exactly $(i, 0)_{e}-\sum_{j=0}^{q-1}(i+j e, 0)_{e q}$ times for $0 \leq i<e$.

Thus, we have the following theorem.
Theorem 15 For positive integers e, m and q, let $n=e m q+1$ be a prime. The sets

$$
Q_{0}=C_{0}^{e q}, Q_{1}=C_{e}^{e q}, Q_{2}=C_{2 e}^{e q}, \ldots, Q_{q-1}=C_{(q-1) e}^{e q}
$$

form a regular DSS with parameters (n, m, q, ρ), where

$$
\rho=\min \left\{(i, 0)_{e}-\sum_{j=0}^{q-1}(i+j e, 0)_{e q} \mid 0 \leq i<e\right\} .
$$

In particular, if $(i, 0)_{e}-\sum_{j=0}^{q-1}(i+j e, 0)_{\text {eq }}$ is constant for each i, then the $D S S$ is perfect, where $\rho=m(q-1) / e$.

Example 16 (a) Let $n=73, e=3, q=2, m=12$. We use 5 as a primitive element of Z_{73}. Then

$$
\begin{aligned}
& (0,0)_{3}=8,(1,0)_{3}=6,(2,0)_{3}=9, \\
& (0,0)_{6}=2,(1,0)_{6}=2,(2,0)_{6}=3, \\
& (3,0)_{6}=2,(4,0)_{6}=2,(5,0)_{6}=0 .
\end{aligned}
$$

Thus the DSS from Theorem 15 has $\rho=2$, and the blocks Q_{i} of size 12 are $\{1,3,9,27,8,24,72,70,64,46,65,49\},\{52,10,30,17,51,7,21,63,43,56,22,66\}$.
(b) Let $n=109, e=3, q=2, m=18$. We use 6 as a primitive element. Then the DSS with $\rho=6$ is perfect since

$$
\begin{gathered}
(0,0)_{3}=11, \quad(1,0)_{3}=10, \quad(2,0)_{3}=14 \\
(0,0)_{6}=2, \quad(1,0)_{6}=0, \quad(2,0)_{6}=2 \\
(3,0)_{6}=3, \quad(4,0)_{6}=4, \quad(5,0)_{6}=6
\end{gathered}
$$

Example 17 (a) Let $n=73, e=4, q=3, m=6$. We use 5 as a primitive element of Z_{73}. Then

$$
\begin{aligned}
& (0,0)_{4}=5, \quad(1,0)_{4}=6, \quad(2,0)_{4}=4, \quad(3,0)_{4}=2 \\
& (0,0)_{12}=2, \quad(1,0)_{12}=0, \quad(2,0)_{12}=0, \quad(3,0)_{12}=0 \\
& (4,0)_{12}=0, \quad(5,0)_{12}=0, \quad(6,0)_{12}=0, \quad(7,0)_{12}=0 \\
& (8,0)_{12}=1, \quad(9,0)_{12}=2, \quad(10,0)_{12}=0, \quad(11,0)_{12}=0
\end{aligned}
$$

Thus the DSS from Theorem 15 has $\rho=2$, and its blocks Q_{i} of size 6 are

$$
\{1,9,8,72,64,65\},\{41,4,36,32,69,37\},\{2,18,16,71,55,57\}
$$

(b) Let $n=769, e=4, q=3, m=64$. We use 11 as a primitive element. Then the DSS with $\rho=32$ is perfect since

$$
\begin{aligned}
& (0,0)_{4}=38,(1,0)_{4}=48, \quad(2,0)_{4}=51, \quad(3,0)_{4}=54 \\
& (0,0)_{12}=0, \quad(1,0)_{12}=6, \quad(2,0)_{12}=9, \quad(3,0)_{12}=6 \\
& (4,0)_{12}=4, \quad(5,0)_{12}=4, \quad(6,0)_{12}=6, \quad(7,0)_{12}=10 \\
& (8,0)_{12}=2, \quad(9,0)_{12}=6, \quad(10,0)_{12}=4, \quad(11,0)_{12}=6
\end{aligned}
$$

Acknowledgment. The first author would like to thank Michigan Technological University for the hospitality during his visit in June and July 2004 while this paper was being written.

References

[1] T. Beth, D. Jungnickel, H. Lenz, "Design Theory", Second Edition, Cambridge University Press, Cambridge 1999.
[2] C. J. Colbourn and J. F. Dinitz, eds., "The CRC Handbook of Combinatorial Designs", CRC Press, Boca Raton, 1996.
[3] S.W. Golomb, B. Gordon, L.R. Welch, "Comma-free codes", Canad. J. Math., vol. 10, no. 2, pp. 202-209, 1958.
[4] V. I. Levenshtein, One method of constructing quasi codes providing synchronization in the presence of errors, Problems of Information Transmission, vol. 7, No. 3 (1971), 215-222.
[5] V. I. Levenshtein, Combinatorial problems motivated by comma-free codes, J. Combin. Designs, 12 (2004), 184-196.
[6] V. D. Tonchev, Difference systems of sets and code synchronization, Rendiconti del Seminario Matematico di Messina, to appear.
[7] V. D. Tonchev, "Combinatorial Configurations", Wiley, New York 1988.

[^0]: * Corresponding author
 ${ }^{1}$ Research supported by JSPS Research Fellow 09978.
 ${ }^{2}$ Research partially sponsored by NSF Grant CCR-0310832 and NSA Grant MDA904-03-1-0088.

