List of Publications
by Vladimir D. Tonchev

* Books: [140], [141], [142], [164].

** Book Chapters: [49], [92], [98].

*** Volumes edited: [7], [25], [75] [99].

15. D. Clark and V.D. Tonchev, A new class of majority-logic decodable codes derived from finite geometry, Advances in Mathematics of Communications, 7, No. 2 (2013), 175-186.

32. M. Harada, C. Lam, A. Munemasa and V.D. Tonchev, Classification of generalized Hadamard matrices H(6,3) and quaternary hermitian self-dual codes of length 18, Electronic J. Combinatorics, 17 (2010), #R171.

34. D. Jungnickel and V.D. Tonchev, Polarities, quasi-symmetric designs, and Hamada’s conjecture, Designs, Codes and Cryptography, 51 (2009), 131-140.

41. V.D. Tonchev, Quantum Codes from Caps, Discrete Math 308 (2008), 6368-6372.

46. V.D. Tonchev, A class of $2-(3^n7,3^{n-1}7,(3^{n-1}7 − 1)/2)$ designs, J. Combinatorial Designs, 15 (2007), 460-464.

64. V.D. Tonchev, A formula for the number of Steiner quadruple systems on 2^n points of 2-rank $2^n - n$, Journal of Combinatorial Designs, 11 (2003), 260-274.

81. Corrigendum to “Classification of affine resolvable 2-(27,9,4) designs”, *J. Statistical Planning and Inference* **86** (2000) 277-278. (with Clement Lam)

86. Linear perfect codes and a characterization of the classical designs, *Designs, Codes and Cryptography* **17** (1999), 121-128.

127. Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound, Designs, Codes and Cryptography, 1 (1991), 247-253 (with D. Jungnickel).

133. Extremal doubly-even codes of length 64 derived from symmetric designs, Discr. Math. 83(1990), 285-289 (with S. Kapralov).

141. * “Combinatorial configurations”, Visha Shchola, Kiev 1988 (Russian translation of [107]).

147. Embedding of the Witt-Mathieu system S(3,6,22) in a symmetric 2-(78,22,6) design, Geometriae Dedicata 22 (1987) 49-75.

179. Embeddability of 2-(9,6,10) designs without repeated blocks, Mathematics and Education in Mathematics (1982) 300-306 (in Bulgarian).

185. On the mutual embeddability of (2k,k,k-1) and (2k-1,k,k) designs, J. Combin. Theory, A 29 (1980) 329-335.

189. Permutation groups and block designs, Mathematics and Education in Math., (1979) 552-564. (in Bulgarian).

