Symmetric Functions and Quasisymmetric Functions

Jie Sun

Michigan Technological University

Algebraic Combinatorics and Applications
Kliakhandler Conference
August 28, 2015
Outline

1. Symmetric Functions

2. NSym and QSym

3. Categorification of the Heisenberg Double

4. Application: QSym is free over Sym
Symmetric Functions

Definition

- R: commutative ring with identity
- $x = (x_1, x_2, \cdots)$: set of indeterminates
- n: nonnegative integer

A homogeneous symmetric function of degree n is a formal power series $f(x) = \sum_\alpha c_\alpha x^\alpha$ where

- α ranges over all weak compositions $\alpha = (\alpha_1, \alpha_2, \cdots)$ of n,
- $c_\alpha \in R$,
- x^α stands for the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$,
- $f(x_{w(1)}, x_{w(2)}, \cdots) = f(x_1, x_2, \cdots)$ for every permutation w of the positive integers.
Symmetric Functions

Definition
Let Λ^n_R be the set of all homogeneous symmetric functions of degree n.

$$\Lambda_R = \Lambda^0_R \oplus \Lambda^1_R \oplus \cdots$$

is a commutative, unital, graded R-algebra.

Bases for Λ^n_Q
- Monomial symmetric functions $\{m_\lambda : \lambda \vdash n\}$
- Elementary symmetric functions $\{e_\lambda : \lambda \vdash n\}$
- Complete homogeneous symmetric functions $\{h_\lambda : \lambda \vdash n\}$
- Power sum symmetric functions $\{p_\lambda : \lambda \vdash n\}$
- Schur functions $\{s_\lambda : \lambda \vdash n\}$
Symmetric Functions

Definition
Let \(\Lambda^n_R \) be the set of all homogeneous symmetric functions of degree \(n \).

\[
\Lambda_R = \Lambda^0_R \oplus \Lambda^1_R \oplus \cdots
\]

is a commutative, unital, graded \(R \)-algebra.

Bases for \(\Lambda^n_Q \)
- Monomial symmetric functions \(\{ m_\lambda : \lambda \vdash n \} \)
- Elementary symmetric functions \(\{ e_\lambda : \lambda \vdash n \} \)
- Complete homogeneous symmetric functions \(\{ h_\lambda : \lambda \vdash n \} \)
- Power sum symmetric functions \(\{ p_\lambda : \lambda \vdash n \} \)
- Schur functions \(\{ s_\lambda : \lambda \vdash n \} \)
Symmetric Functions Over Integers

\[\Lambda_\mathbb{Z} = \text{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots] \]

- \(e_1 = x_1 + x_2 + \cdots \)
- \(e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots \)
- \(e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n} \)

Sym as a Hopf algebra

- \(\triangle : \text{Sym} \rightarrow \text{Sym} \otimes \text{Sym}, \quad e_n \mapsto \sum_{i+j=n} e_i \otimes e_j \)
- \(\epsilon : \text{Sym} \rightarrow \mathbb{Z}, \quad e_n \mapsto 0, \quad n \geq 1 \)

Connection to Representation Theory

- (Geissinger 1977) \(\text{Sym} \cong \bigoplus_{n=0}^{\infty} K_0(\mathbb{C}[S_n]\text{-mod}) \)
Symmetric Functions Over Integers

\[\Lambda_\mathbb{Z} = \text{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots] \]

- \(e_1 = x_1 + x_2 + \cdots \)
- \(e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots \)
- \(e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n} \)

Sym as a Hopf algebra

- \(\triangle : \text{Sym} \rightarrow \text{Sym} \otimes \text{Sym}, \quad e_n \mapsto \sum_{i+j=n} e_i \otimes e_j \)
- \(\epsilon : \text{Sym} \rightarrow \mathbb{Z}, \quad e_n \mapsto 0, \ n \geq 1 \)

Connection to Representation Theory

- (Geissinger 1977) \(\text{Sym} \cong \bigoplus_{n=0}^{\infty} K_0(\mathbb{C}[S_n]\text{-mod}) \)
Symmetric Functions Over Integers

\[\Lambda_{\mathbb{Z}} = \text{Sym} = \mathbb{Z}[e_1, e_2, \cdots] \subset \mathbb{Z}[x_1, x_2, \cdots] \]

- \(e_1 = x_1 + x_2 + \cdots \)
- \(e_2 = x_1x_2 + x_1x_3 + x_2x_3 + \cdots \)
- \(e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1}x_{i_2}\cdots x_{i_n} \)

Sym as a Hopf algebra

- \(\Delta : \text{Sym} \to \text{Sym} \otimes \text{Sym}, \quad e_n \mapsto \sum_{i+j=n} e_i \otimes e_j \)
- \(\epsilon : \text{Sym} \to \mathbb{Z}, \quad e_n \mapsto 0, \quad n \geq 1 \)

Connection to Representation Theory

- (Geissinger 1977) \(\text{Sym} \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(\mathbb{C}[S_n]\text{-mod}) \)
Duality of Sym

Bilinear Form on Sym

- Define \(\langle \cdot , \cdot \rangle : \text{Sym} \times \text{Sym} \rightarrow \mathbb{Z} \) by \(\langle m_\lambda, h_\mu \rangle = \delta_{\lambda,\mu} \) for \(\lambda, \mu \in \mathcal{P} \).
- \(\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \)

Bilinear Form on Sym \(\otimes \) Sym

- Define \((\cdot , \cdot) : \text{Sym} \otimes \text{Sym} \times \text{Sym} \otimes \text{Sym} \rightarrow \mathbb{Z} \) by \((x \otimes y, x' \otimes y') = \langle x, x' \rangle \langle y, y' \rangle \).
- \((x \otimes y, \triangle(z)) = \langle \nabla(x \otimes y), z \rangle \)

Sym \(\cong \) Sym*

- \(\text{Sym}^* = \bigoplus_{n \in \mathbb{N}} (\Lambda^n_{\mathbb{Z}})^* : \) graded dual of Sym
- \(\Phi : \text{Sym} \cong \text{Sym}^* \) by \(\Phi(x)(y) = \langle x, y \rangle \).
Duality of \(\text{Sym} \)

Bilinear Form on \(\text{Sym} \)

- Define \(\langle \cdot, \cdot \rangle : \text{Sym} \times \text{Sym} \rightarrow \mathbb{Z} \) by \(\langle m_\lambda, h_\mu \rangle = \delta_{\lambda,\mu} \) for \(\lambda, \mu \in \mathcal{P} \).
- \(\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \)

Bilinear Form on \(\text{Sym} \otimes \text{Sym} \)

- Define \((\cdot, \cdot) : \text{Sym} \otimes \text{Sym} \times \text{Sym} \otimes \text{Sym} \rightarrow \mathbb{Z} \) by \((x \otimes y, x' \otimes y') = \langle x, x' \rangle \langle y, y' \rangle \).
- \((x \otimes y, \triangle(z)) = \langle \nabla(x \otimes y), z \rangle \)

\(\text{Sym} \cong \text{Sym}^* \)

- \(\text{Sym}^* = \bigoplus_{n \in \mathbb{N}} (\Lambda^n_{\mathbb{Z}})^* \): graded dual of \(\text{Sym} \)
- \(\phi : \text{Sym} \cong \text{Sym}^* \) by \(\phi(x)(y) = \langle x, y \rangle \).
Duality of Sym

Bilinear Form on Sym

- Define $\langle \cdot , \cdot \rangle : \text{Sym} \times \text{Sym} \rightarrow \mathbb{Z}$ by $\langle m_\lambda, h_\mu \rangle = \delta_{\lambda,\mu}$ for $\lambda, \mu \in \mathcal{P}$.
- $\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu}$

Bilinear Form on $\text{Sym} \otimes \text{Sym}$

- Define $(\cdot , \cdot) : \text{Sym} \otimes \text{Sym} \times \text{Sym} \otimes \text{Sym} \rightarrow \mathbb{Z}$ by $(x \otimes y, x' \otimes y') = \langle x, x' \rangle \langle y, y' \rangle$.
- $(x \otimes y, \triangle(z)) = \langle \bigtriangledown(x \otimes y), z \rangle$

Sym $\cong \text{Sym}^*$

- $\text{Sym}^* = \bigoplus_{n \in \mathbb{N}} (\wedge^n_{\mathbb{Z}})^* :$ graded dual of Sym
- $\Phi : \text{Sym} \cong \text{Sym}^*$ by $\Phi(x)(y) = \langle x, y \rangle$.
Noncommutative Symmetric Functions

Definition

\[\text{NSym} = \mathbb{Z}\langle h_1, h_2, \cdots \rangle: \text{free algebra} \]

NSym as a Hopf algebra

- \(\triangle : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad h_n \mapsto \sum_{i+j=n} h_i \otimes h_j \)
- \(\epsilon : \text{NSym} \to \mathbb{Z}, \quad h_n \mapsto 0, \quad n \geq 1 \)

Connection to Representation Theory

- (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)

\[\text{NSym} \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(H_n(0)\text{-pmod}) \]
Noncommutative Symmetric Functions

Definition
\[\text{NSym} = \mathbb{Z}\langle h_1, h_2, \cdots \rangle: \text{free algebra} \]

\[\text{NSym as a Hopf algebra} \]
- \(\Delta : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad h_n \mapsto \sum_{i+j=n} h_i \otimes h_j \)
- \(\epsilon : \text{NSym} \to \mathbb{Z}, \quad h_n \mapsto 0, \quad n \geq 1 \)

Connection to Representation Theory
- (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)
\[\text{NSym} \cong \bigoplus_{n=0}^{\infty} \mathcal{K}_0(H_n(0)\text{-pmod}) \]
Noncommutative Symmetric Functions

Definition
\[\text{NSym} = \mathbb{Z}\langle h_1, h_2, \cdots \rangle : \text{free algebra} \]

NSym as a Hopf algebra
- \[\triangle : \text{NSym} \to \text{NSym} \otimes \text{NSym}, \quad h_n \mapsto \sum_{i+j=n} h_i \otimes h_j \]
- \[\epsilon : \text{NSym} \to \mathbb{Z}, \quad h_n \mapsto 0, \quad n \geq 1 \]

Connection to Representation Theory
- (Duchamp, Krob, Leclerc, Thibon, Ung, 1996)
\[\text{NSym} \cong \bigoplus_{n=0}^{\infty} K_0(H_n(0)-\text{pmod}) \]
Quasisymmetric Functions

Definition (Gessel 1984)

$\text{QSym} \subset \mathbb{Z}[[x_1, x_2, \cdots]]$ consisting of shift invariant formal power series of bounded degree, i.e., $f \in \text{QSym}$ if and only if

$$\text{coeff of } x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k} \text{ in } f = \text{coeff of } x_{i_1}^{n_1} x_{i_2}^{n_2} \cdots x_{i_k}^{n_k} \text{ in } f$$

for all $0 < i_1 < i_2 < \cdots < i_k$ and $n_1, n_2, \cdots, n_k \in \mathbb{N}$.

Example

- $\sum_{i<j} x_i^2 x_j$ quasisymmetric, not symmetric.
- $\sum_{i<j} x_i x_j^5$ quasisymmetric, not symmetric.
Quasisymmetric Functions

Definition (Gessel 1984)

\(\text{QSym} \subset \mathbb{Z}[[x_1, x_2, \cdots]] \) consisting of shift invariant formal power series of bounded degree, i.e., \(f \in \text{QSym} \) if and only if

\[
\text{coeff of } x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k} \text{ in } f = \text{coeff of } x_{i_1}^{n_1} x_{i_2}^{n_2} \cdots x_{i_k}^{n_k} \text{ in } f
\]

for all \(0 < i_1 < i_2 < \cdots < i_k \) and \(n_1, n_2, \cdots, n_k \in \mathbb{N} \).

Example

- \(\sum_{i<j} x_i^2 x_j \) quasisymmetric, not symmetric.
- \(\sum_{i<j} x_i x_j^5 \) quasisymmetric, not symmetric.
Quasisymmetric Functions

Additive Basis for $QSym$

- $M_{\alpha} = \sum_{i_1<\ldots<i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$, where $\alpha \in \text{Comp}(n)$.

$QSym$ as a Hopf algebra

- Multiplication: overlapping shuffles
- Comultiplication: cut

Duality of $NSym$ and $QSym$

- Define $\langle \cdot, \cdot \rangle : NSym \times QSym \to \mathbb{Z}$ by $\langle h_{\alpha}, M_{\beta} \rangle = \delta_{\alpha,\beta}$.
- $(\cdot, \cdot) : NSym \otimes NSym \times QSym \otimes QSym \to \mathbb{Z}$
- $(\triangle(h_{\alpha}), M_{\beta} \otimes M_{\gamma}) = \langle h_{\alpha}, \nabla(M_{\beta} \otimes M_{\gamma}) \rangle$
- $QSym \cong NSym^*$
Quasisymmetric Functions

Additive Basis for QSym

- $M_{\alpha} = \sum_{i_1 < \cdots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}$, where $\alpha \in \text{Comp}(n)$.

QSym as a Hopf algebra

- Multiplication: overlapping shuffles
- Comultiplication: cut

Duality of NSym and QSym

- Define $\langle \cdot , \cdot \rangle : \text{NSym} \times \text{QSym} \rightarrow \mathbb{Z}$ by $\langle h_{\alpha}, M_{\beta} \rangle = \delta_{\alpha,\beta}$.
- $(\langle \cdot , \cdot \rangle : \text{NSym} \otimes \text{NSym} \times \text{QSym} \otimes \text{QSym} \rightarrow \mathbb{Z}$
- $(\triangle(h_{\alpha}), M_{\beta} \otimes M_{\gamma}) = \langle h_{\alpha}, \nabla(M_{\beta} \otimes M_{\gamma}) \rangle$
- $\text{QSym} \cong \text{NSym}^*$
Quasisymmetric Functions

Additive Basis for QSym

- \(M_\alpha = \sum_{i_1 < \ldots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k} \), where \(\alpha \in \text{Comp}(n) \).

QSym as a Hopf algebra

- Multiplication: overlapping shuffles
- Comultiplication: cut

Duality of NSym and QSym

- Define \(\langle \cdot, \cdot \rangle : \text{NSym} \times \text{QSym} \rightarrow \mathbb{Z} \) by \(\langle h_\alpha, M_\beta \rangle = \delta_{\alpha,\beta} \).
- \((\cdot, \cdot) : \text{NSym} \otimes \text{NSym} \times \text{QSym} \otimes \text{QSym} \rightarrow \mathbb{Z} \)
- \((\triangle(h_\alpha), M_\beta \otimes M_\gamma) = \langle h_\alpha, \nabla(M_\beta \otimes M_\gamma) \rangle \)
- \(\text{QSym} \cong \text{NSym}^* \)
Polynomial Freeness of QSym

Ditters Conjecture 1972

The algebra QSym is a free commutative algebra over the integers.

Hazewinkel 2001, 2002

- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

QSym is free over Sym

- $E = \{e_n(\alpha) \mid \alpha \in e\text{LYN}, n \in \mathbb{N}\}$: free polynomial basis for QSym.
- E contains the elementary symmetric functions.
Polynomial Freeness of $QSym$

Ditters Conjecture 1972
The algebra $QSym$ is a free commutative algebra over the integers.

Hazewinkel 2001, 2002
- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

$QSym$ is free over Sym
- $E = \{e_n(\alpha) \mid \alpha \in eLYN, n \in \mathbb{N}\}$: free polynomial basis for $QSym$.
- E contains the elementary symmetric functions.
Polynomial Freeness of $QSym$

Ditters Conjecture 1972
The algebra $QSym$ is a free commutative algebra over the integers.

Hazewinkel 2001, 2002
- Ditters Conjecture is proved.
- An explicit free commutative polynomial basis is constructed.

$QSym$ is free over Sym
- $E = \{e_n(\alpha) \mid \alpha \in eLYN, \; n \in \mathbb{N}\}$: free polynomial basis for $QSym$.
- E contains the elementary symmetric functions.
The Heisenberg Double

Definition (Dual Pair)

\((H^+, H^-)\) is a dual pair of Hopf algebras if

- \(H^\pm\) are graded connected Hopf algebras,
- we have a perfect Hopf pairing \(\langle \cdot, \cdot \rangle : H^- \times H^+ \to R\).

Via this pairing, identify \(H^\pm\) with the grade dual of \(H^\mp\).

Definition (Heisenberg Double)

The Heisenberg double of \(H^+\) is the algebra \(\mathfrak{h} = \mathfrak{h}(H^+, H^-)\) given by

- \(\mathfrak{h} = H^+ \otimes H^-\) as \(R\)-modules.
 We write \(a \# x\) for \(a \otimes x\), viewed as an element of \(\mathfrak{h}\).
- Multiplication is given by:
 \((a \# x)(b \# y) = \sum_{(x)} a^R x_{(1)}^* (b) \# x_{(2)} y = \sum_{(x), (b)} \langle x_{(1)}, b_{(2)} \rangle a b_{(1)} \# x_{(2)} y\).
The Heisenberg Double

Definition (Dual Pair)

\((H^+, H^-)\) is a dual pair of Hopf algebras if
- \(H^\pm\) are graded connected Hopf algebras,
- we have a perfect Hopf pairing \(\langle \cdot, \cdot \rangle : H^- \times H^+ \to R\).

Via this pairing, identify \(H^\pm\) with the grade dual of \(H^{\mp}\).

Definition (Heisenberg Double)

The Heisenberg double of \(H^+\) is the algebra \(\mathfrak{h} = \mathfrak{h}(H^+, H^-)\) given by
- \(\mathfrak{h} = H^+ \otimes H^-\) as \(R\)-modules.
 - We write \(a\#x\) for \(a \otimes x\), viewed as an element of \(\mathfrak{h}\).
- Multiplication is given by:
 \[(a\#x)(b\#y) = \sum_{(x)} a^R x^{(1)}(b)\#x^{(2)} y = \sum_{(x),(b)} \langle x^{(1)}, b^{(2)} \rangle ab^{(1)}\#x^{(2)} y.\]
Fock Space Representation

Definition (Fock Space Representation)
The algebra \mathfrak{h} has a natural representation on H^+ given by

$$(a \sharp x)(b) = a^R x^*(b), \quad a, b \in H^+, \ x \in H^-.$$

Stone-von Neumann Type Theorem (Savage, Yacobi 2015)

- The representation \mathcal{F} is faithful.
- If R is a field, then \mathcal{F} is irreducible.
- Any representation of \mathfrak{h} generated by a lowest weight vacuum vector is isomorphic to \mathcal{F}.

Jie Sun (MTU)

Sym and QSym

2015-8-28 12 / 20
Fock Space Representation

Definition (Fock Space Representation)
The algebra \mathcal{H} has a natural representation on H^+ given by

$$(a \# x)(b) = a^R x^*(b), \quad a, b \in H^+, \quad x \in H^-.$$

Stone-von Neumann Type Theorem (Savage, Yacobi 2015)

- The representation F is faithful.
- If R is a field, then F is irreducible.
- Any representation of \mathcal{H} generated by a lowest weight vacuum vector is isomorphic to F.
Example

\[
\text{Sym} \cap \text{NSym} \leftrightarrow \text{QSym} \\
\downarrow \\
\text{Sym}
\]

Heisenberg Algebra \(h = h(\text{Sym}, \text{Sym}) \)
- \(p_1, p_2, \cdots \): the power sums in \(H^+ = \text{Sym} \).
- \(p_1^*, p_2^*, \cdots \): the power sums in \(H^- = \text{Sym} \).
- \(p_m p_n = p_n p_m, \quad p_m^* p_n^* = p_n^* p_m^*, \quad p_m^* p_n = p_n p_m^* + m\delta_{m,n} \).

Quasi-Heisenberg Algebra \(q = h(\text{QSym}, \text{NSym}) \)
- Fock space representation: natural action on \(\text{QSym} \).
- \(q_{\text{proj}} \): subalgebra generated by \(\text{Sym} \subset \text{QSym} \) and \(\text{NSym} \).
Example

Sym \cap NSym \leftrightarrow QSym

Heisenberg Algebra \mathfrak{h} = \mathfrak{h}(\text{Sym, Sym})

- \(p_1, p_2, \cdots\): the power sums in \(H^+ = \text{Sym}\).
- \(p^*_1, p^*_2, \cdots\): the power sums in \(H^- = \text{Sym}\).
- \(p_m p_n = p_n p_m, \quad p^*_m p^*_n = p^*_n p^*_m, \quad p^*_m p_n = p_n p^*_m + m \delta_{m,n}\).

Quasi-Heisenberg Algebra \(\mathfrak{q} = \mathfrak{h}(\text{QSym, NSym})\)

- Fock space representation: natural action on QSym.
- \(\mathfrak{q}_{\text{proj}}\): subalgebra generated by \(\text{Sym} \subset \text{QSym}\) and \(\text{NSym}\).
Example

\[
\text{Sym} \cap \text{NSym} \leftrightarrow \text{QSym}
\]
\[
\downarrow
\]
\[
\text{Sym}
\]

Heisenberg Algebra \(\mathfrak{h} = \mathfrak{h}(\text{Sym}, \text{Sym}) \)

- \(p_1, p_2, \cdots \): the power sums in \(H^+ = \text{Sym} \).
- \(p_1^*, p_2^*, \cdots \): the power sums in \(H^- = \text{Sym} \).
- \(p_m p_n = p_n p_m, \ p_m^* p_n^* = p_n^* p_m^*, \ p_m^* p_n = p_n p_m^* + m \delta_{m,n} \).

Quasi-Heisenberg Algebra \(\mathfrak{q} = \mathfrak{h}(\text{QSym}, \text{NSym}) \)

- Fock space representation: natural action on \(\text{QSym} \).
- \(\mathfrak{q}_{\text{proj}} \): subalgebra generated by \(\text{Sym} \subset \text{QSym} \) and \(\text{NSym} \).
Categorification

Goal
To categorify Heisenberg doubles and their Fock space representations.

What is categorification?
Suppose M is a module for a ring R. We would like to find an abelian category \mathcal{M} such that

$$K_0(\mathcal{M}) \xrightarrow{\phi} M$$ (as \mathbb{Z}-modules),

where $K_0(\mathcal{M})$ is the Grothendieck group of \mathcal{M}.
Categorification

Goal
To categorify Heisenberg doubles and their Fock space representations.

What is categorification?
Suppose M is a module for a ring R. We would like to find an abelian category \mathcal{M} such that

$$\mathcal{K}_0(\mathcal{M}) \xrightarrow{\phi} M \quad \text{(as } \mathbb{Z}\text{-modules)},$$

where $\mathcal{K}_0(\mathcal{M})$ is the Grothendieck group of \mathcal{M}.
Categorification

For each $r \in R$ (or, for those r in a fixed generating set), we want an exact endofunctor F_r of \mathcal{M} such that we have a commutative diagram:

$$
\begin{array}{ccc}
\mathcal{K}_0(\mathcal{M}) & \xrightarrow{[F_r]} & \mathcal{K}_0(\mathcal{M}) \\
\phi \downarrow & & \phi \downarrow \\
M & \xrightarrow{r} & M
\end{array}
$$

Here $[F_r]$ denotes the map induced by F_r on $\mathcal{K}_0(\mathcal{M})$.

We would also like isomorphisms of functions lifting the relations of R. For example, suppose we have a relation in R: $rs = 2sr + 3$. Then we would like isomorphisms of functors $F_r \circ F_s \cong (F_s \circ F_r) \oplus 2 \oplus \text{Id} \oplus 3$.
Categorification

For each $r \in R$ (or, for those r in a fixed generating set), we want an exact endofunctor F_r of \mathcal{M} such that we have a commutative diagram:

$$
\begin{array}{ccc}
\mathcal{K}_0(\mathcal{M}) & \xrightarrow{[F_r]} & \mathcal{K}_0(\mathcal{M}) \\
\phi \downarrow & & \phi \downarrow \\
M & \xrightarrow{r} & M
\end{array}
$$

Here $[F_r]$ denotes the map induced by F_r on $\mathcal{K}_0(\mathcal{M})$.

We would also like isomorphisms of functions lifting the relations of R. For example, suppose we have a relation in R: $rs = 2sr + 3$. Then we would like isomorphisms of functors $F_r \circ F_s \cong (F_s \circ F_r) \oplus 2 \oplus \text{Id} \oplus 3$.
Categorification

Fruits of Categorification

- Classes of objects (simple, indecomposable projective) give distinguished bases with positivity and integrality properties.
- Uncovers hidden structure in the algebra and its representation.
- Provides tools for studying the category \mathcal{M}.
- Applications to topology and physics.

Example

- (Lusztig) Categorification of quantum groups yields canonical bases with positivity and integrality properties.
Categorification

Fruits of Categorification

- Classes of objects (simple, indecomposable projective) give distinguished bases with positivity and integrality properties.
- Uncovers hidden structure in the algebra and its representation.
- Provides tools for studying the category \mathcal{M}.
- Applications to topology and physics.

Example

- (Lusztig) Categorification of quantum groups yields canonical bases with positivity and integrality properties.
Categorification of the Heisenberg Double

Goal

- Find categories whose Grothendieck groups are isomorphic to \mathfrak{h} as \mathbb{Z}-modules,
- Find functors lifting the action of \mathfrak{h} on Fock space,
- Find isomorphisms of functors lifting the defining relations of \mathfrak{h}.

Module Categories

- $A = \bigoplus_{n \in \mathbb{N}} A_n$: a tower of algebras.
- A_n-mod: category of f.g. left A_n-modules.
- A_n-pmod: category of f.g. projective left A_n-modules.
- $G_0(A_n)$: Grothendieck group of A_n-mod.
- $K_0(A_n)$: Grothendieck group of A_n-pmod.
Categorification of the Heisenberg Double

Goal

- Find categories whose Grothendieck groups are isomorphic to \(\mathfrak{h} \) as \(\mathbb{Z} \)-modules,
- Find functors lifting the action of \(\mathfrak{h} \) on Fock space,
- Find isomorphisms of functors lifting the defining relations of \(\mathfrak{h} \).

Module Categories

- \(A = \bigoplus_{n \in \mathbb{N}} A_n \): a tower of algebras.
- \(A_n\text{-mod} \): category of f.g. left \(A_n \)-modules.
- \(A_n\text{-pmod} \): category of f.g. projective left \(A_n \)-modules.
- \(G_0(A_n) \): Grothendieck group of \(A_n \)-mod.
- \(K_0(A_n) \): Grothendieck group of \(A_n \)-pmod.
Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let \(G(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n) \) and \(K(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n) \). Then \((G(A), K(A))\) is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras \(A \), we associate the Heisenberg double \(h(A) := h(G(A), K(A)) \) and its Fock space \(F(A) = G(A) \).

Theorem (Savage, Yacobi 2015)

The functors \(\text{Ind}_M \) and \(\text{Res}_P \) for \(M \in A\text{-mod} \) and \(P \in A\text{-pmod} \) categorify the Fock space representation \(F(A) = G(A) \).
Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let $\mathcal{G}(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n)$ and $\mathcal{K}(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n)$. Then $(\mathcal{G}(A), \mathcal{K}(A))$ is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double $\mathcal{H}(A) := \mathcal{H}(\mathcal{G}(A), \mathcal{K}(A))$ and its Fock space $\mathcal{F}(A) = \mathcal{G}(A)$.

Theorem (Savage, Yacobi 2015)

The functors Ind_M and Res_P for $M \in A\text{-mod}$ and $P \in A\text{-pmod}$ categorify the Fock space representation $\mathcal{F}(A)$ of $\mathcal{H}(A)$.
Categorification of the Heisenberg Double

Theorem (Bergeron, Li 2009)

Let $\mathcal{G}(A) = \bigoplus_{n \in \mathbb{N}} G_0(A_n)$ and $\mathcal{K}(A) = \bigoplus_{n \in \mathbb{N}} K_0(A_n)$. Then $(\mathcal{G}(A), \mathcal{K}(A))$ is a dual pair of Hopf algebras.

Definition (Heisenberg double associated to a tower)

To a tower of algebras A, we associate the Heisenberg double $\mathfrak{h}(A) := \mathfrak{h}(\mathcal{G}(A), \mathcal{K}(A))$ and its Fock space $\mathcal{F}(A) = \mathcal{G}(A)$.

Theorem (Savage, Yacobi 2015)

The functors Ind_M and Res_P for $M \in A\text{-mod}$ and $P \in A\text{-pmod}$ categorify the Fock space representation $\mathcal{F}(A)$ of $\mathfrak{h}(A)$.
Application: QSym is free over Sym

Tower of 0-Hecke algebras

- $A = \bigoplus_{n \in \mathbb{N}} H_n(0)$
- $G(A) = \text{QSym}, K(A) = \text{NSym}$
- $q = h(\text{QSym}, \text{NSym}):$ quasi-Heisenberg algebra
- q_{proj}: subalgebra generated by $\text{Sym} \subset \text{QSym}$ and NSym.

Theorem (Savage, Yacobi 2015)
Any representation of q_{proj} generated by a lowest weight vacuum vector is isomorphic to Sym.

Theorem (Hazewinkel 2001, Savage, Yacobi 2015)
QSym is free as a Sym-module.
Application: \(\text{QSym is free over Sym} \)

Tower of 0-Hecke algebras

- \(A = \bigoplus_{n \in \mathbb{N}} H_n(0) \)
- \(\mathcal{G}(A) = \text{QSym}, \mathcal{K}(A) = \text{NSym} \)
- \(q = \mathfrak{h}(\text{QSym}, \text{NSym}): \text{quasi-Heisenberg algebra} \)
- \(q_{\text{proj}}: \text{subalgebra generated by Sym} \subset \text{QSym and NSym}. \)

Theorem (Savage, Yacobi 2015)

Any representation of \(q_{\text{proj}} \) generated by a lowest weight vacuum vector is isomorphic to \(\text{Sym} \).

Theorem (Hazewinkel 2001, Savage, Yacobi 2015)

\(\text{QSym is free as a Sym-module.} \)
Application: QSym is free over Sym

Tower of 0-Hecke algebras

- $A = \bigoplus_{n \in \mathbb{N}} H_n(0)$
- $\mathcal{G}(A) = \text{QSym}$, $\mathcal{K}(A) = \text{NSym}$
- $q = h(\text{QSym}, \text{NSym})$: quasi-Heisenberg algebra
- q_{proj}: subalgebra generated by $\text{Sym} \subset \text{QSym}$ and NSym.

Theorem (Savage, Yacobi 2015)

Any representation of q_{proj} generated by a lowest weight vacuum vector is isomorphic to Sym.

Theorem (Hazewinkel 2001, Savage, Yacobi 2015)

QSym is free as a Sym-module.
Further Applications

Towers of Superalgebras

- 0-Hecke-Clifford algebras (Li 2015)
- The ring of peak quasisymmetric functions is free over the subring of symmetric functions spanned by Schur’s Q-functions.
- Other towers of (super)algebras (ongoing work)

Thank you for your attention!
Further Applications

Towers of Superalgebras

- 0-Hecke-Clifford algebras (Li 2015)
- The ring of peak quasisymmetric functions is free over the subring of symmetric functions spanned by Schur’s Q-functions.
- Other towers of (super)algebras (ongoing work)

Thank you for your attention!