SPHERICAL EMBEDDINGS OF STRONGLY REGULAR GRAPHS

Alexey Glazyrin
The University of Texas Rio Grande Valley
August 27, 2015
Algebraic Combinatorics and Applications
The first annual Kliakhandler Conference
This is a joint work with Alexander Barg, Kasso Okoudjou, and Wei-Hsuan Yu.
Two-distance tight frames

Spherical two-distance 2-designs

Strongly regular graphs
A finite collection of vectors $S = \{x_i, 1 \leq i \leq N\} \subset \mathbb{R}^n$ is called a finite frame for the Euclidean space \mathbb{R}^n if there are constants $0 < A \leq B < \infty$ such that for all $x \in \mathbb{R}^n$

$$A\|x\|^2 \leq \sum_{i=1}^{N} \langle x, x_i \rangle^2 \leq B\|x\|^2. \tag{1}$$

If $A = B$, then S is called an A-tight frame.

An equivalent condition for A-tight frames is $Ax = \sum_{i=1}^{N} \langle x, x_i \rangle x_i$ for all $x \in \mathbb{R}^n$.

If in addition $\|x_i\| = 1$ for all i, then S is a unit-norm tight frame.
Theorem (Benedetto-Fickus, 2003)

If $N > n$ then

$$\sum_{i,j=1}^{N} \langle x_i, x_j \rangle^2 \geq \frac{N^2}{n}$$

with equality if and only if S is a tight frame.
A finite collection of unit vectors $S \subseteq \mathbb{R}^n$ is called a spherical two-distance set if there are two numbers a and b such that the inner products of distinct vectors from S are either a or b. If at the same time S is a finite unit-norm tight frame, we call it a two-distance tight frame.

If $a + b \neq 0$, the definition of a tight frame immediately shows that S must be regular, i.e. the distribution of inner products is the same for each vector x_i.
If the two inner products of a two-distance tight frame S satisfy the condition $a = -b$, then it is called an equiangular tight frame.

Equiangular tight frames

Certain strongly regular graphs

For a natural number t, a finite set of vectors $S = \{x_i, 1 \leq i \leq N\} \subset S^{n-1}$ is called a spherical t-design if for any polynomial $f(x)$ of degree at most t

$$\frac{1}{|S^{n-1}|} \int_{x \in S^{n-1}} f(x) d\sigma(x) = \frac{1}{N} \sum_{i=1}^{n} f(x_i).$$

(3)

Examples:

- Icosahedron and dodecahedron are 5-designs
- 120-cell and 600-cell are 11-designs
- Root systems
- Minimal vectors of the Leech lattice form an 11-design
Spherical 2-designs are tight frames

$S = \{x_i, 1 \leq i \leq N\} \subset \mathbb{S}^{n-1}$ is a spherical 2-design if and only if

$$\sum_{i,j=1}^{N} \langle x_i, x_j \rangle^2 = \frac{N^2}{n} \quad \text{and} \quad \sum_{i=1}^{N} x_i = 0$$

(4)
Spherical 2-designs are tight frames

$S = \{x_i, 1 \leq i \leq N\} \subset \mathbb{S}^{n-1}$ is a spherical 2-design if and only if

$$\sum_{i,j=1}^{N} \langle x_i, x_j \rangle^2 = \frac{N^2}{n} \quad \text{and} \quad \sum_{i=1}^{N} x_i = 0$$

(4)
A regular graph of degree \(k \) on \(v \) vertices is called strongly regular if every two adjacent vertices have \(\lambda \) common neighbors and every two non-adjacent vertices have \(\mu \) common neighbors. We use the notation \(\text{SRG}(v, k, \lambda, \mu) \) to denote such a graph.

Examples:

- Cycle of length 5
- Petersen graph
- Hoffman-Singleton graph
- Conference graphs
- \(n \times n \) rook’s graphs
Delsarte, Goethals, and Seidel obtained a spherical embedding of $\Gamma = \text{SRG}(v, k, \lambda, \mu)$ by associating a basis of \mathbb{R}^v with the vertices of Γ, projecting these vectors on an eigenspace of the adjacency matrix of Γ, and normalizing lengths of projections. They also showed that this embedding forms a two-distance 2-design.
Delsarte, Goethals, and Seidel obtained a spherical embedding of $\Gamma = \text{SRG}(v, k, \lambda, \mu)$ by associating a basis of \mathbb{R}^v with the vertices of Γ, projecting these vectors on an eigenspace of the adjacency matrix of Γ, and normalizing lengths of projections. They also showed that this embedding forms a two-distance 2-design.
Proposition

If S is a regular 2-distance tight frame in \mathbb{R}^n, then S is either an n-dimensional spherical 2-design, or is similar to an $(n - 1)$-dimensional spherical 2-design contained in a subsphere of radius $\sqrt{1 - 1/n}$.

Proof.

Let $s = \sum_{i=1}^{N} x_i$. The value $t := \langle x_i, s \rangle$ is the same for all i. Using an equivalent definition of tight frames, we get

$$\frac{N}{n} s = \sum_{i=1}^{N} tx_i = ts.$$

Hence either $s = 0$ or $t = \frac{N}{n}$. \qed
Proposition

If S is a regular 2-distance tight frame in \mathbb{R}^n, then S is either an n-dimensional spherical 2-design, or is similar to an $(n - 1)$-dimensional spherical 2-design contained in a subsphere of radius $\sqrt{1 - 1/n}$.

Regular two-distance tight frames

Spherical two-distance 2-designs
Proposition

If \(S \) is a regular two-distance tight frame, then its associated graph \(\Gamma_1 \) (and \(\Gamma_2 \) as the complement of \(\Gamma_1 \)) is a strongly regular graph.

Proof.

Use a theorem by Delsarte, Goethals, Seidel for 2-designs or just check the definition of tight frames carefully.
Proposition

If S is a regular two-distance tight frame, then its associated graph Γ_1 (and Γ_2 as the complement of Γ_1) is a strongly regular graph.
TWO-DISTANCE TIGHT FRAMES ARE DEFINED BY SRG’S

Spherical two-distance 2-designs

Strongly regular graphs

Question

What two-distance spherical embeddings of SRG’s form 2-designs?
For a given SRG(v, k, λ, μ) which is not a complete or empty graph, its adjacency matrix has three mutually orthogonal eigenspaces (subspaces) that correspond to three eigenvalues: the all-one vector $\mathbf{1}$ with eigenvalue k and subspaces E_1 and E_2. Projecting an orthonormal basis of \mathbb{R}^n on $\mathbf{1}$ and normalizing gives a trivial 1-dimensional embedding, where all inner products are 1.

Projections on E_1 or on E_2 after normalization give two-distance 2-designs.

Direct orthogonal sum of two spherical embeddings is a spherical embedding.
Proposition

For a given $\Gamma = \text{SRG}(N, k, \lambda, \mu)$, any two-distance spherical embedding may be represented as a direct orthogonal sum of the trivial and Delsarte-Goethals-Seidel embeddings.

Proof.

Since the Gram matrix is positive definite, the set of possible values of scalar products a and b associated to embeddings of Γ forms a triangle on (a, b)-plane with vertices corresponding to the trivial and two Delsarte-Goethals-Seidel embeddings. Therefore, any pair (a, b) may be obtained as a non-negative linear combination of scalar products from these embeddings.
Theorem

Any spherical two-distance 2-design with graph \(\Gamma = \text{SRG}(N, k, \lambda, \mu) \) for one of the distances is either one of two Delsarte-Goethals-Seidel embeddings, or a regular \((N - 1)\)-dimensional simplex.

Proof.

Use the previous proposition and the description of embeddings via eigenspaces of the adjacency matrix of \(\Gamma \). \[\square\]
Theorem

Any spherical two-distance 2-design with graph \(\Gamma = \text{SRG}(N, k, \lambda, \mu) \) for one of the distances is either one of two Delsarte-Goethals-Seidel embeddings, or a regular \((N - 1)\)-dimensional simplex.
Theorem

Let S be a regular two-distance tight frame in \mathbb{R}^n. Then S forms a spherical two-distance 2-design or a shifted 2-design. In either case S can be obtained as a spherical embedding of a strongly regular graph. Under spherical embedding, every strongly regular graph gives rise to three different two-distance 2-designs and therefore, to six different two-distance tight frames, two of which are regular simplices.
<table>
<thead>
<tr>
<th>SRG(N, k, λ, μ)</th>
<th>2-design (n, N, a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shifted 2-design (n, N, a, b)</td>
</tr>
<tr>
<td>$(10, 6, 3, 4)$</td>
<td>$(4, 10, \frac{1}{6}, -\frac{2}{3}); (5, 10, \frac{1}{3}, -\frac{1}{3});$</td>
</tr>
<tr>
<td></td>
<td>$(5, 10, \frac{1}{3}, -\frac{1}{3}); (6, 10, \frac{4}{9}, -\frac{1}{9})$</td>
</tr>
<tr>
<td>$(15, 8, 4, 4)$</td>
<td>$(5, 15, \frac{1}{4}, -\frac{1}{2}); (9, 15, \frac{1}{6}, -\frac{1}{4});$</td>
</tr>
<tr>
<td></td>
<td>$(6, 15, \frac{3}{8}, -\frac{1}{4}); (10, 15, \frac{1}{4}, -\frac{1}{8})$</td>
</tr>
<tr>
<td>$(16, 10, 6, 6)$</td>
<td>$(5, 16, \frac{1}{5}, -\frac{3}{5}); (10, 16, \frac{1}{5}, -\frac{1}{5});$</td>
</tr>
<tr>
<td></td>
<td>$(6, 16, \frac{1}{3}, -\frac{1}{3}); (11, 16, \frac{3}{11}, -\frac{1}{11})$</td>
</tr>
</tbody>
</table>
THANK YOU!