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ABSTRACT 
Motivation: Microarray experiments typically analyze thousands to 
tens of thousands of genes from small numbers of biological repli-
cates. Classical Bonferroni and recently developed false discovery 
rate (FDR) corrections appear conservative when applied to such 
analyses. The fact that genes are normally expressed in functionally 
relevant patterns suggests that gene expression data can be strati-
fied and clustered into relatively homogenous groups. Cluster-wise 
dimensionality reduction should make it feasible to improve screen-
ing power while minimizing information loss. 
Results: We propose a powerful and computationally simple 
method for finding differentially expressed genes. The method in-
corporates a novel stratification-based tight clustering algorithm and 
principle component analysis. Comprehensive simulations show that 
our method is substantially more powerful than the standard Benja-
mini and Hochberg FDR approach, especially for a large number of 
tests. The mean relative power gain over the standard FDR method 
approaches 177% when testing 10000 genes. We applied the 
method to four real microarray datasets: one from a Populus nitro-
gen deficiency experiment with 3 biological replicates; and three 
from public microarray datasets of human cancers with 10 to 40 
biological replicates.  In all four analyses, our method proved more 
robust than the standard FDR method for identification of differen-
tially expressed genes. 
Availability: The C++ code to implement the proposed method is 
available upon request for academic use. 
Contact: shuzhang@mtu.edu 
Supplementary information: Excel datasets of the tables and dia-
grams in this article can be viewed at http://www.math.mtu.edu/~ 
shuzhang/ 

1 INTRODUCTION  
Analysis of high-throughput microarray data is becoming com-
monplace with the increase of sequenced genomes and genome-
wide investigations of gene expression (Brem et al., 2002; Yvert et 
al., 2003; Morley et al., 2004; Chesler et al., 2005; Hubner et al., 
2005; Mehrabian et al., 2005; Scheetz et al., 2006; Tsai et al., 
2006). Low-replication experiments are common in microarray 
studies (Lee et al., 1999; Gadbury et al., 2003) and testing for dif-
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ferential expression of many genes with small samples is problem-
atic (Sima and Dougherty, 2006; Yang and Churchill, 2006). One 
central challenge is to identify, reliably and economically, as many 
biologically and statistically significant genes as possible while 
controlling false positives. 

Research in multiple testing has passed several milestones. Na-
ive application of standard hypothesis tests with no adjustment for 
multiplicity results in a large number of reproducible false discov-
eries (Manly et al., 2004). One solution is to control family-wise 
type-I error rate by the Bonferroni correction (Holm, 1979) or the 
step-up sequential Bonferroni correction (Hochberg, 1988), which 
use stringent significance criteria to prevent false positives. The 
tradeoff is substantially reduced power for detecting false null 
hypotheses. Benjamini and Hochberg (1995) pioneered BH95 (a 
step-up approach) for independent tests that controls FDR, the 
portion of significant results that are erroneous. Numerous theo-
retical studies and practical applications of FDR control have fol-
lowed (e.g., Benjamini and Yekutieli, 2001), and more recently, 
FDR control has been widely adopted for identification of differen-
tially expressed genes in microarray experiments (Reiner et al., 
2003; Li et al., 2005; Pawitan, 2005; Pounds and Cheng, 2005).  
However, the inherent multiplicity and complex dependence struc-
tures of such experiments are a challenge for massive multiple 
hypothesis tests.  As commented by Verhoeven et al. (2005), 
BH95 can be conservative in that it controls FDR below a nominal 
level no matter how many null hypotheses are true. For compre-
hensive reviews on significance measures and approaches of mul-
tiple testing in microarray experiments, see Dudoit (2003) and 
Pounds (2006).  

It is not surprising that a procedure loses power as the number of 
tests increases. We believe that suitable dimension reduction tech-
niques based on clustering can be applied to effectively reduce the 
number of tests, thereby conserving testing power. Standard clus-
tering analysis forces all data points into groups at the expense of 
cluster tightness. For microarray experiments, Tseng and Wong 
(2005) have proposed a method to identify informative, tight, and 
stable clusters to enable statistically valid biological inferences 
from microarray data. By integrating K-means clustering with 
resampling, this “tight-clustering” method embodies a novel con-
cept that does not necessitate the estimation of the number of clus-
ters and the assignment of all genes into clusters.  Although prom-
ising, it is computationally intensive and requires large sample 
sizes like other resampling-based techniques. 
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In this article, we propose an efficient method to identify differ-
entially expressed genes. We term the method FCPC, since it is 
based on forward search using gene-to-gene correlation and princi-
pal component analyses. In FCPC, we first divide genes into co-
expression strata using the information conveyed by gene expres-
sion. This is analogous to the post-stratification technique com-
monly used in large scale survey sampling (Cochran, 1977; Holt 
and Smith, 1979; Feng and Shi, 1996) to improve inference preci-
sion. Second, we design a tight clustering method to search each 
stratum for tight gene clusters in each of which the minimum gene-
to-gene correlation exceeds a pre-determined level. The proposed 
tight clustering approach should be especially suitable for low-
replicate experiments. Next, we represent tight clusters by their 
first principal components (PCs). In terms of mean-square error, 
principal component analysis is a suitable linear dimension reduc-
tion technique for defining a new dimensional space that captures 
the maximum information in the original dataset. Finally, we 
screen for significant differential expression among PCs and scat-
tered genes, simultaneously controlling FDR. Because the PCs and 
scattered genes are largely uncorrelated, BH95 applies. If a PC is 
found significant, all genes in the cluster are declared to be signifi-
cant. Simulations show that FCPC controls FDR and is more pow-
erful than BH95. Applications to real microarray datasets also 
show that our method yields more noteworthy candidate genes for 
follow-up studies than BH95 does. 

2 METHODS 
Briefly, FCPC is composed of four steps: creating co-expression 
strata, finding tight clusters, assigning a representative value for 
each tight cluster by principal component analysis, and identifying 
differentially expressed clusters and/or scattered genes. Details of 
the four steps are given below. 

2.1 Generation of co-expression strata 
All genes (probe sets) are initially divided into two strata based on 
mean expression differences between control and treatment: 

1 0i i id x x= − for 1,..., ,ti M= where 0ix and 1ix are mean expression 

indices of the thi gene in the control and the treatment, respectively, 
and tM is the number of all genes under consideration. We call 

{ :  0}ii d+ = >S  and { :  0}ii d− = <S the up-regulated and down-
regulated strata, respectively, and we screen for up- and down-
regulated genes from +S and −S . We further stratify +S using rela-
tive expression ratios 1 0i i ir x x= for .i +∈S  For an integer 1k ≥ , 
we assign all of the genes with relative expression ratios 
in [ 0.5, 0.5)k k− + into substratum .k  Similarly, we further stratify 

−S using 0 1i i ir x x= for .i −∈S  

2.2 Identification of tight clusters 
If the smallest gene-to-gene correlation within a cluster is chosen 
to exceed 0ρ  (=0.8), we identify the cluster as having a tight-
ness 0ρ . We search for tight clusters separately within each stratum. 
For a given tightness 0ρ , we find tight clusters recursively by a 
four-step algorithm:  

(1) Find a cluster core. Search for the gene pair ( , )C i j= with 
the largest sample correlation max ijρ ρ= in the stratum. 

If max 0ρ ρ≥ , then take C as the core of a potential cluster. 
Otherwise, go to step (4).  

(2) Extend the core to a cluster. For gene ,g C∉  
if 0min{ : }gi i Cρ ρ∈ > , then add the gene to C and denote 
as the current cluster; otherwise, search for the next 
gene C∉ . Repeat this step until no additional genes can be 
added. Retain current C as a tight cluster and go to the next 
step.  

(3) Remove the tight cluster from the stratum and repeat steps 
(1) and (2) for the remaining genes in the stratum to find 
another cluster of tightness 0.ρ  Repeat this step until no 
additional clusters of the same tightness can be found.  

(4) Reduce the value of 0ρ and repeat steps (1) to (3) until 

0ρ falls to a pre-determined value. In our simulation stud-
ies and real database analyses, we begin with 0ρ = 0.8, and 
then reduce it to 0.7, 0.6, and finally 0.5. See Sections 3.3 
and 5 for the rationale of choosing these values. 

2.3 Principal component analysis 

For a tight cluster of size 2,m ≥  denote by ( )
1( ,..., )j

j mjx x x τ= the 

expression indices of m genes in the thj biological individual. 

Calculate ( ) ( )
1
( )( ) ,

n j j
j

x x x x τ
=

Σ = − −∑  where 0 1n n n= + , 0n is 

the sample size of controls, 1n  is the sample size of treatments, 

and 1 ( )
1

.
n j
j

x n x−
=

= ∑  All positive eigenvalues of Σ  are denoted 

by 1 .pλ λ≥ ≥"  The first PC of the thj biological individual is 

given by * ( )
1 ,j

jx e xτ=  where 1e is the eigenvector associating 

with 1.λ  We propose the use of ( )* * *
1 , , nx x x

τ
= " to represent this 

tight cluster. How well the first PC represents this cluster can be 

measured by the ratio 1 1

p
kk

γ λ λ
=

= ∑ , the proportion of total 

variance explained by the first PC.  Fig. S1 illustrates the represen-
tativeness of the first PC.  

2.4 Identification of differentially expressed genes 
Suppose there are 1M tight clusters and 2M scattered genes. We 
calculate the p-value of the two-sample t-test for each of the 

1M tight clusters by using its first PC and, the p-value of the two-
sample t-test for each of the 2M scattered gene by using its gene 

expression index. We sort the 1 2M M M= +  p-values as (1)p <"  

( ).Mp<  Denote }( ) ( )max{ }i ip p i Mδ α= : ≤ for a preset rate .α  All 

clusters and scattered genes with p-values smaller thanδ are sig-
nificant. To findδ , we start at ( )Mp , proceed to smaller p-values as 

long as ( ) ,ip i Mα>  and stop the procedure as ( )ip i Mα≤  

with ( ).ipδ =   All significant scattered genes and the genes in the 
significant clusters are extracted as differentially expressed candi-
date genes.  

2.5 Method comparison 
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We compare the proposed method with the BH95. Denote by ip� the 
p-value of the two-sample t test of the thi gene, 1,..., ,i M=  where 
M  is the number of genes in the up-regulated stratum. Denote 
by (1) (2) ( )Mp p p< < <� � �" the sorted p-values of all these t tests. 
Denote }( ) ( )max{ }i ip p i Mδ α= : ≤� � � for the preset rate .α  The 
BH95 identifies all genes with p-values smaller than .δ�  

3 SIMULATION STUDIES 

3.1 Simulation design 
We conducted simulations in a two-condition experiment with 3 
controls and 3 treatments to compare FCPC with BH95 approach. 
The expression indices are generated in numerous independent 
blocks. The first four blocks contain up-regulated genes and are 
called up-regulated blocks, and the other blocks contain stably 
expressed genes and are referred to as stable blocks. The sizes of 
the four up-regulated blocks are fixed at 10, 40, 40 and 10 for a 
total of 100dM =  up-regulated genes. The size of each stable 
block is a random number between m and ,eM  where m is a preset 
minimum size for all simulation replications, and eM is the number 
of all stably expressed genes.  For one block of size ,bm  we gener-
ate the gene expression indices of controls and treatments 
from ( 1 , )c b bN µ ℜ and ( 1 , )t b bN µ ℜ respectively, where ( 1 , )c b bN µ ℜ  
stands for the multivariate normal distribution with mean 1c bµ  and 
a variance-covariance matrix (1 )b b bIρℜ = −  1 1 ,b b bρ ′+  bI is the 
identity matrix of order ,bm 1 (1,...,1) ,b ′= bρ is a random number 
between ρ and 1, and ρ is a preset minimum correlation across all 
blocks. Across all stable blocks cµ = tµ =5, and across the four up-
regulated blocks, cµ =5, and tµ =15, 12, 10, and 8, respectively. 

3.2 Simulation results 
To compare FCPC with BH95, we adopt FDR and power as per-
formance criteria. As conventionally defined in the literature, we 
define 1

1
FDR 1 ( 0)R

r dr rr
R I M M M−

=
= − >∑ for a given method, 

where drM is the number of true discoveries and rM is the number 

of all discoveries by the method at the thr simulation replication, 
and R is the number of all simulation replications. We de-
fine 1

1
power ( ) R

d drr
RM M−

=
= ∑ as the average probability of reject-

ing the false null hypotheses, referred to as the average power in 
Dudoit et al. (2003). 

 We investigated 16 scenarios described by m∈{1,20,50,100} 
and ρ ∈ {0.25, 0.5, 0.75, 0.9}. Under each scenario, we set nomi-

nal FDR at 0.05, and set R =1000 to evaluate the powers and true 
FDRs for different numbers of tests .tM  Table S1 shows the corre-
sponding FDRs as tM increases from 1000 to 10000. The standard 
BH95 is uniformly conservative in all scenarios, regardless of gene 
number. By contrast, FCPC appears to be conservative when tM is 
small, and the conservativeness declines as tM increases. Table S2 
shows BH95 and FCPC power across the 16 scenarios. As shown 
by two representative scenarios in Fig. 1, BH95 power consistently 
declines from about 0.8 to near 0.3, whereas FCPC power is sus-
tained. The gain of FCPC to standard BH95 becomes more pro-
nounced as tM  increases. We calculated the relative gain of FCPC 
to standard BH95 as FCPC BH95( ) ( ) ( ) 1,G t t tR i M G i M G i M= −  where 

FCPC ( )tG i M = FCPC FCPCPower ( ) FDR ( )t ti M i M−  for each given value 

of tM in scenario {1,...,16}.i∈  We then calculated the mean relative 

gain across all 16 scenarios 161
16 1

( ) ( )G t G ti
R M R i M

=
= ∑ and the 

corresponding coefficient of variance for each given value of 

a. m=1,  ρ=0.25 
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Fig. 1. Powers of BH95 (black bars) and FCPC (white bars) under two 
scenarios described by ( ,m ρ ). Horizontal axis: Number of genes tM  (in 
thousands). Vertical axis: Power. 
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Fig. 2. Mean relative gain of FCPC to BH95 across 16 scenarios. Horizon-
tal axis: Number of genes tM  (in thousands). Vertical axis: Mean relative 

gain GR (in %). As tM increases from 1000 to 10000, the mean relative 
gain increases from 9% to 177%.  
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.tM As shown in Fig. 2, ( )G tR M increases linearly from 9% to 
177% as tM increases from 1000 to 10000. The coefficient of vari-
ance of the relative gains corresponding to each value of tM is 
about 0.1 except for tM =1000, where the coefficient of variance is 
0.3. Such small coefficients of variance indicate that the linear 
trend of mean relative gains is steady. 

Although BH95 was originally developed for independent tests, 
Benjamini and Yekutieli (2001) showed that it also controls FDR 
for tests exhibiting some types of positive dependence.  They pro-
posed a modified FDR approach, referred to as BY01, to handle 
data with other forms of dependency. In our simulation study; 
however, BY01 performed rather conservatively and was much 
less powerful than BH95 under the dependency structure described 
in Section 3.1 (data not shown). Our results support the comments 
of Reiner et al. (2003) and Verhoeven et al. (2005) that BY01 may 
be too conservative for microarray experiments.  

The representativeness of the first PC for each tight cluster was 

evaluated according to 1 1

p
kk

γ λ λ
=

= ∑ . Table 1 shows the dis-

tribution and certain mathematical characteristics of the γ-values of 
104332 tight clusters produced by 1000 simulation replications 
under a scenario described in Section 3.1, where m =1, ρ =0.5, 
and 5000.tM =  There are 100221 clusters of tightness ≥ 0.8, and 
2386 clusters of tightness 0.7 to 0.8, and so on. The number of 
clusters decreases rapidly as the level of tightness declines. For the 
tight clusters at each level, the median and mean are large, and the 
coefficient of variance is very small.  In general, the first PC of a 
tight cluster represents the cluster well. On average, the first PC 
explained 82% of the total variance (Table 1, see the smallest mean 
and median). Additional details for first PCs of tightness ≥ 0.8 are 
shown in Fig. S1. 

Table 1. The representativeness of the first PC 

0ρ  cn  minγ  maxγ  Mean Median cv  
0.8 100221 0.8741 0.9999 0.9321 0.9290 0.0207
0.7   2386 0.8139 0.9927 0.8984 0.8953 0.0315
0.6   1113 0.7567 0.9967 0.8619 0.8506 0.0463
0.5     612 0.6901 0.9887 0.8209 0.8079 0.0618
0ρ : level of tightness;   :cn  number of clusters;   min :γ  minimum of observed 

γ values;   max :γ  maximum of observed γ values;   :cv coefficient of variance. 

3.3 The basis for the forward search tight clustering  
The correlations between genes of different expression patterns 

have distinct properties. Let ρ̂  be a generic notation of the correla-
tion between two genes. We distinguish three possibilities of ˆ :ρ  i) 
between two differentially expressed genes, ii) between a differen-
tially expressed gene and a stably expressed gene, and iii) between 
two stably expressed genes. The proposed tight clustering is based 
on our simulation studies on gene-to-gene correlations. 
In our method the probability ( )0ˆPr ρ ρ>  reflects the likelihood of 
assigning two genes of interest into a cluster of tightness 0.ρ  To 
illustrate the distribution properties of ˆ ,ρ   we sampled the expres 
sion indices of two genes exhibiting bivariate normal distribution 
in a control group with mean zero, variance 1 and correlation ,ρ  
and bivariate normal distribution in a treatment group with mean 
( , ) ,µ ν ′  variance 1 and correlation .ρ  For given differential ex-

a.
 µ

=ν
=5
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Fig. 3. Each curve is based on a gene pair expressed in 3 controls and 3 
treatments. For a control, the expression of the pair is sampled from the 
bivariate normal distribution with mean 0, variance 1, and correlation ,ρ  
and for a treatment, the expression of the pair is sampled from the bivariate 
normal distribution with mean ( , ) ,µ ν ′ variance 1, and correlation .ρ Hori-
zontal axis: 0ρ . Vertical axis: 0ˆPr( )ρ ρ> , where ρ̂  is gene-to-gene cor-
relation 
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pression ( , )µ ν ′  the proba-bility ( )0ˆPr ρ ρ>  increased with popu-
lation correlation ρ  (Fig. 3 and Fig. S2). This is consistent with 
classical sample correlation. These figures also show three particu-
lar characteristics of gene-to-gene correlations, which clearly differ 
from classical sample correlations.  

First, the distribution of the correlation between two similarly 
up- or down-regulated genes (i.e., 0µ ν= ≠ ) can be dramatically 
affected by the magnitude of differential .µ   The larger the magni-
tude, the larger the probability ( )0ˆPr ,ρ ρ>  and the more likely the 
two genes will be clustered together. As shown in Fig. 3a-b and 
Fig. S2a-b, the correlation between two differentially expressed 
genes is likely large if the magnitude of the differential is large. 
Surprisingly, this is also true for two independent genes ( 0ρ = ).   
As 5µ =  and 0,ρ = ( )ˆPr 0.8ρ > =0.9091 in Fig. 3a and = 0.9585 
in Fig. S2a. The probability decreases as µ  decreases. As µ =3 and 

0,ρ = ( )ˆPr 0.8ρ > = 0.4798 in Fig. 3b and =0.0072 in Fig. S2b. 
Given 0,ρ =  ( )ˆPr 0.8ρ >  decreases to 0.032 in Fig. 3c and 0 in 
Fig. S2c when µ  decreases to 0. Since high gene-to-gene correla-
tions likely occur between similarly up- or down-regulated genes 
with large differentials, the proposed method tends to assign those 
genes with the largest differentials to a common cluster in early 
iteration steps.  

Second, the correlation between a stably expressed gene and a 
differentially expressed gene is unlikely to be large. This is espe-
cially the case when the magnitude of differential is large, even 
when the population correlation ρ is close to 1. As µ =3, 

( )ˆPr 0.8ρ > ≤ 0.1354 in Fig. 3d and ( )ˆPr 0.8ρ > ≤ 0.0001 in Fig. 

S2d for [0,1].ρ ∈  As 10,µ = ( )ˆPr 0.8ρ > ≤ 0.0518 in Fig. 3e and 

( )ˆPr 0.8ρ > =0 in Fig. S2e for [0,1].ρ ∈  These upper bounds are 

achieved at 1,ρ = and for fixed µ the probability ( )0ˆPr ρ ρ> de-
clines as ρ  decreases. Thus, the proposed forward-search tight 
clustering method can reduce the chance of assigning a stable gene 
to a differentially expressed cluster, and vice versa.   

Third, Fig. 3c-e and Fig. S2c-e show two properties of the corre 
lation ρ̂  between a stably expressed gene and a differentially ex-
pressed gene: i) The distribution of ρ̂  is invariant to µ  if the two 
genes are independent ( 0ρ = ). Precisely, independence means 

2ˆ ˆ2 1nτ ρ ρ= − − 2nt −∼ (the student t with 2n − degrees of 
freedom) for arbitrary µ . ii) For arbitrary [0,1],ρ ∈ τ converges in 
distribution to 2nt −  as µ → +∞ .  As µ increases, the curves with 
respect to positive population correlations decline toward the 
benchmark curve of an independent stably expressed pair. By these 
properties, one may control the possibility of clustering a gene of 
fixed differential expression with a stably expressed gene by 
choosing a suitable tightness correlation threshold.  

Classical correlation theory applies for the correlation ρ̂ between 
two stably expressed genes ( 0µ ν= = ). In such a case, ρ̂  is well-
known to converge in probability to the population correlation ρ  
as sample size increases. The distribution of ρ̂  is mainly affected 
by ρ  for a finite sample size. The larger the population correlation, 
the more likely ρ̂  is to be larger than a given threshold, see Fig. 3c 
and Fig. S2c.  In microarray experiments, there are more stably 
expressed genes than differentially expressed genes. Hence, the 
forward-search tight clustering is especially efficient as there are 
large population correlations among stably expressed genes.  

4 APPLICATIONS TO REAL MICROARRAY 
DATASETS 

4.1 Nitrogen deficiency in Populus  
We applied FCPC to analyze the transcriptomic response of Popu-
lus fremontii × angustifolia to nitrogen deficiency using the Ge-
neChip® Poplar Genome Array (Affymetrix). Raw hybridization 
signals were processed by the Affymetrix MAS 5.0 software, and 
only probe-sets identified as “present” in all 3 control and 3 nitro-
gen stress replicates were analyzed further. The resultant 13507 
probe-sets were separated into up- (7228) and down-regulated 
(6279) strata, with their substrata and associated parameters sum-
marized in Table 2. Of the 7228 probe-sets in the up-regulated 
stratum, 7218 were represented by 374 tight clusters, and likewise, 
6266 of the 6279 probe-sets in the down-regulated stratum were 
covered in 343 tight clusters. To control the overall FDR 
atα = 0.05, we allocated half α (i.e., 0.025) each to the up- and 
down-strata to identify differentially expressed genes by the BH95 
correction.  The FCPC method detected 435 significantly up- and 
12 significantly down-regulated genes. However, using BH95 at 
the same α level, we only identified 204 up- and 14 down-
regulated genes, altogether 229 less than the FCPC. 

Table 2. Distribution of substrata, tight clusters and probe-set numbers 
within the up- and down-regulated strata in the nitrogen stress experiment 
of Populus 

Up-regulated stratum Down-regulated stratum 

RR SS NC NGC RR SS NC NGC
17 1   56 1   
11 1   23 1   
10 4 1 4 21 1   
9 6 2 6 19 1   
8 6 1 5 18 2   
7 15 2 14 17 2   
6 16 2 15 15 1   
5 58 4 57 14 5 1 5 
4 211 14 211 13 3 1 3 
3 1961 71 1959 12 2 1 2 
2 4949 277 4947 11 3 1 3 
    10 4 1 3 
    9 3 1 3 
    8 2 1 2 
    7 8 1 7 
    6 18 2 17 
    5 37 4 37 
    4 57 5 57 
    3 204 14 204 
    2 1563 61 1562
    1 4361 249 4361

Total 7228 374 7218 Total 6279 343 6266

RR: Relative expression ratio; SS: Substratum size; NC: Number of clusters; NGC: 
Number of probe-sets in clusters. 

 
Further examination of the significant results from each proce-

dure reveals discrepancies in terms of the genes identified. Table 3 
lists the 10 discoveries based on the highest expression differen-
tials and the 10 discoveries based on the smallest expression dif-
ferentials found by FCPC and BH95. Half of the discoveries by 
FCPC from the up-regulated stratum were not captured by BH95 
(see the genes and relative expression ratios in bold face). FCPC 
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outperformed BH95 in capturing strongly up-regulated candidate 
genes (Table 3a), as well as those were weakly but statistically 
significantly up-regulated (Table 3b). For instance, 9 of 10 weakly 
up-regulated genes discovered by FCPC were missed by BH95. All 
10 FCPC discoveries shown in Table 3b were less than 1.3-fold 
up-regulated, versus only 2 by BH95. Although biological signifi-
cance of these weakly up-regulated candidate genes requires fol-
low-up analysis, FCPC nevertheless provides a more sensitive 
means than BH95 in capturing more candidate genes for subse-
quent investigations. 

Table 3.  Partial lists of up-regulated candidate genes in nitrogen-stressed 
Populus 

a. The top 10 significant discoveries with the largest relative expression 
ratios 

BH95 FCPC 
Gene name RR Gene names RR
Ptp.459.1.S1_s_at 15.95 Ptp.459.1.S1_s_at 15.95
PtpAffx.24885.1.A1_a_at   9.20 PtpAffx.113871.1.A1_at   9.27
PtpAffx.27718.1.S1_s_at   8.77 PtpAffx.24885.1.A1_a_at   9.20
PtpAffx.6111.2.S1_a_at   7.92 Ptp.3642.1.A1_at   8.87
Ptp.3539.1.S1_x_at   7.92 PtpAffx.27718.1.S1_s_at   8.77
PtpAffx.74725.1.S1_at   7.51 PtpAffx.6111.2.S1_a_at   7.92
PtpAffx.101017.1.A1_s_at   7.43 Ptp.3539.1.S1_x_at   7.92
PtpAffx.618.1.S1_x_at   7.12 PtpAffx.40333.1.S1_at   7.78
Ptp.3539.1.S1_at   6.99 PtpAffx.74725.1.S1_at   7.51
Ptp.1516.3.S1_s_at   6.33 PtpAffx.101017.1.A1_s_at   7.43
b. The last 10 significant discoveries with the smallest relative expression 

ratios 
BH95 FCPC 

Gene name RR Gene name RR
Ptp.7283.1.S1_s_at 1.39 PtpAffx.32381.1.S1_s_at 1.29
PtpAffx.19580.1.S1_at 1.39 PtpAffx.152585.1.S1_at 1.29
Ptp.2604.1.S1_x_at 1.38 PtpAffx.12414.1.S1_at 1.28
PtpAffx.207565.1.S1_at 1.37 PtpAffx.87139.1.A1_at 1.28
Ptp.7637.1.A1_at 1.37 Ptp.513.1.S1_at 1.26
PtpAffx.216289.1.S1_at 1.33 PtpAffx.85691.1.S1_s_at 1.25
PtpAffx.10425.1.S1_at 1.32 Ptp.4891.2.A1_at 1.25
PtpAffx.6384.1.A1_s_at 1.31 PtpAffx.2360.3.S1_at 1.25
Ptp.4961.1.S1_at 1.23 PtpAffx.5275.1.A1_at 1.20
PtpAffx.206462.1.S1_at 1.19 PtpAffx.206462.1.S1_at 1.19

RR: Relative expression ratio. 

4.2 Human diseases 
Having applied the FCPC method to the low-replicate plant mi-
croarray experiment, we then turned to investigate its performance 
in microarray datasets of human cancers (breast cancer, colon can-
cer, and leukemia), in which there were more biological replicates. 
The original breast cancer dataset is from van’t Veer et al. (2002), 
based on the Agilent Hu25K oligo array platform. We use the files 
ArrayData_less_than_5yr.zip and Array_Data_greater_than_ 
5yr.zip, which correspond to 34 patients that developed metastases 
within 5 years and 44 individuals that remained disease-free for 
over 5 years, respectively. As the authors did, we selected only the 
genes that were “significantly regulated” (see their definition in the 
paper and supplemental material), which resulted in a total of 4869 
clones. We excluded the th10  individual from the “diseased” data-
set (sample 54, IRI000045837, in the original data files), because it 
had over 44% missing values out of the entire 24481 clones. The 

colon cancer dataset is from Alon et al. (1999). In that dataset, 
expression indices of 40 tumor and 22 normal colon tissues for 
6600 human genes were measured using the Affymetrix GeneChip. 
A subset of 2000 genes with the highest minimal signal intensity 
across the samples was chosen by the authors for further analysis. 
The leukemia dataset is from Golub et al. (1999). We used the data 
of 11 AML and 27 ALL from the original paper. This dataset con-
tains expression indices of 6817 genes, and 3051 genes remained 
after filtering and preprocessing as done by the authors. The basic 
features of the three data sets are summarized in Table 4a.  

Table 4. Basic features and significant gene discoveries of the three hu-
man cancer datasets 

a.  Numbers of 

 Cancers filtered genes controls Treatments 
 Breast 4869 44 33 
 Colon 2000 22 40 
 Leukemia 3051 11 27 

b.  BH95 FCPC 

 Cancers Up Down Total Up Down Total

 Breast   66      2 68 127     2 129 
 Colon 201 129 340 234 166 400 
 Leukemia 362 324 686 410 372 782 
 

FCPC detected significantly higher numbers of differentially ex-
pressed genes than BH95 in all three datasets, as shown in Table 
4b. Using the leukemia dataset as an example, BH95 discovered 
362 significantly up-regulated genes and 324 significantly down-
regulated genes, while FCPC discovered 410 and 372, respectively. 
The numbers of significant discoveries from these three real data-
sets can be validated in a relevant study by Meinshausen and 
Bühlmann (2005), who estimated the lower bounds of the numbers 
of differentially expressed genes in these datasets. The number of 
significant genes discovered by FCPC was very close to or greater 
than the lower bounds given by these authors. For the breast cancer, 
colon cancer and leukemia, the estimated lower bounds at α = 
0.01 were 126, 245 and 811 respectively, while FCPC identified 
129, 400 and 782 differentially expressed candidate genes respec-
tively. In contrast, the number of significant genes detected by 
BH95 was smaller than the estimated lower bound in 2 of the 3 
datasets. 

5 DISCUSSION 
In this article, we present a powerful and computationally simple 
method, FCPC, to detect differentially expressed genes from mi-
croarray data. The method integrates the strengths of stratification, 
tight clustering, data compression, and standard Benjamini-
Hochberg FDR correction. We evaluated FCPC by simulation 
studies as well as by application to real datasets. Simulation results 
showed that FCPC controls FDR and is much more powerful than 
the popular FDR correction when the number of genes is large. 
The basis for the FCPC approach is two-fold. First, expression 
indices that vary between different experimental conditions can 
reveal certain regulatory strata. Genes within one common stratum 
may be more closely related functionally, at the organismal level, 
than genes from different strata. This serves as the basis for post 
stratification. Second, many expression indices within one com-
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mon stratum are strongly correlated. This serves as the basis for 
correlation-based clustering. 

The rationality of the iterative clustering method we employed 
deserves special mention. Clustering was done progressively, and 
with a correlation threshold in order to maximize the tightness of 
early-formed clusters.  We designed the method according to our 
observations on the sampling distributions of gene-to-gene correla-
tion.  A correlation threshold can be chosen such that the sample 
correlation between similarly up- or down-regulated genes will 
most likely exceed that threshold, while the sample correlation 
between a stably expressed gene and a differentially expressed 
gene is unlikely to meet the threshold. Therefore, the proposed 
clustering method can distinguish differentially expressed genes 
from stably expressed genes during the early iterations, and organ-
ize them into tight clusters. In addition, the correlation between 
two stably expressed genes is likely larger than a threshold if the 
population correlation is strong. This integration proved to effi-
ciently prevent loss of statistical power and the flood of FDR. 

The observations in Section 3.3 are helpful for defining the 
tightness levels for tight clustering to find stable clusters.  It is very 
difficult to find the optimal set of tightness levels without informa-
tion about the population correlation .ρ  According to our simula-
tions and observations of the properties of gene-to-gene correlation, 
{0.8, 0.7, 0.6, 0.5} is a reasonable choice. Analysis of real data as 
in Section 4 appeared to validate this estimate, as use of these 
tightness levels resulted in the clustering of nearly all genes.  

FCPC appears conservative in analysis where the number of 
genes is small, even more conservative than the BH95. One may 
improve testing power by creating larger and/or more clusters us-
ing a set of more flexible tightness levels.  
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