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Abstract

First it is shown that every odd orderr2¢ 1)-regular connected Cayley graph on an rarddementary abelian
group is Hamilton decomposable. We apply this result toyPgitaphs and show that when given a odd prime power
g = p", and even order rankmultiplicative subgrous of the finite fieldF,, that the Cayley graph with connection
setS is Hamilton decomposable, wheneV8f > 2n?. This extends the recent result of Alspach, Bryant and Dyer o
Paley graphs.

Introduction

Let A be an Abelian group anl c A such that 0z S. We denote bys* the inverse-closure @&, that is,S* is the
smallest superset & satisfyings € S* if and only if —s € S*.

The Cayley graphCav(A; S*) is the graph whose vertices are the elementa wiith x adjacent toy if and only

if X—y e S*. The subse® C Ais called theconnection setor the Cayley graphCav(A; S*) and an edgéx, y} of
Cav(A; S*) isans-edge ifx+ s=y, forse S.

A cycle that spans the vertices of a graghs called aHamilton cycleof X. A Hamilton decompositionf a

regular graph with even valence is a partition of its edgargetHamilton cycles. AHamilton decompositioof a
regular graph with odd valence is a patrtition of its edge stet Hamilton cycles and a single one-factor. A graph
admitting a Hamilton decomposition is said to Bamilton-decomposableSee Figures 1 and 2.  Alspach [1]
conjectured in 1984, that Cayley graphs on Abelian groupsHamilton-decomposable. This conjecture remains
unresolved. Bermond [3] conjectured in 1978, that Cartegraduct of Hamilton-decomposable graphs is Hamilton-
decomposable. This conjecture also remains unresolvedhére is a very useful partial result due to Stong [6].
Stong’s result includes the following theorem which we riegju

Figure 1: A Hamilton decomposition ofa2(Z2; {(1, 1), (0, 1), (1, 0)}*)
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Figure 2: A Hamilton decomposition ofa2(Z2; {(2, 2), (0, 1), (1, 0)}*)

Theorem 1.1 (Stong 1991f X; is a Hamilton-decomposable graph of vale2eynd X% is a Hamilton-decomposable
graph of valencys, with r < s, then the Cartesian produciXX, is Hamilton-decomposable if either of the following
two conditions holds:

1. s<3r,or
2. r>3.

According to [2] the proof of the next theorem was not givempéetely in the original paper [4] because “they
interpreted involutions in an unusual way”. It is also atsm [2] that completing their proof is a trivial exercise.

Theorem 1.2 (Bermond, Favaron, Meheao 1989 and Alspach, Bayt, Dyer 2010)Every connected Cayley graph
of valency 4 on an Abelian group is Hamilton-decomposable.

For graphs of valency 6, a result was recently obtained bytlWes Liu and Kreher [7].

Theorem 1.3 (Westlund, Kreher and Liu 2009)Every connected Cayley graph of valency 6 on an odd orderidbel
group is Hamilton-decomposable.

A corollary to these results obtained in [2] is

Corollary 1.4 The cartesian product of any number of cycles and any nunftmmmected Cayley graphs of valency
4 on Abelian groups is Hamilton-decomposable.

The most important result that we establish in this artisle i

Theorem 1.5 (The Key)Let S be a basis of ¥ Zj, p an odd prime, and let g be any non-zero vector afS/. Then
the Cayley graph % Cav(V; (S U {g})*) has a Hamilton decomposition.

Its proof which we provide in Section 3 is an induction prdwdttbegins in dimension 2. We dedicate Section 2 to the
n = 2 case. In Section 4 is our application of this Key Theoremdi@ygraphs.

We end this section by reminding the reader of two fundaniéstaniques used in the construction of Hamilton
decompositions, see for example [5]AfandB are graphs on the vertex $étthen thesymmetric dferenceof A and
B is the graphA A B onV with edge setE(A) \ E(B)) U (E(B) \ E(A) the symmetric dierence of the edge sets Af
andB.

Technique 1: If Ag, A1, Az, ..., A1 are pairwise edge-disjoint cycles aBd= XoYoXiyiXaY2 - - - Xk-1Yk-1 IS @ length R
closed trail (for example a cycle) such thxat € E(Ag+Ar+- - -+A_1) foralli, butyiXi;1 ¢ E(Ag+A1+- - -+Ac1)
for anyi (subscripts modulk), then the symmetric éfierence

(Ao+A1+--+Ac1)AC
is a single cycle.

Technique 2: If Ais a cycle of lengtit with orientationxgX; - - - X, andF is a 4-cycleabcdsuch thata, b}, {c,d} €
E(A), {b,c},{a,d} ¢ E(A), and @,b), (c,d) both agree with the orientation given g then the symmetric
differenceA A C is a cycle of lengtHt.



O P N W b 07 O
O R N W b 01 O

01 2 3 4 5 °6 1 2 3 456
H;

Figure 3: Gv(Z3;{(2,5), (0, 1), (1, 0)}*)

2 Dimension 2

Let p be an odd prime and l€t= (a,b) € Z2, where neithea norb is zero, also se#; = (1,0),& = (0,1). In this
section we consider the Cayley graph
X = Cav(Z; (F, 81, &)").

In this section we construct Hamilton decomposittdny H,, Hz of X where the subgrapR of r-edges are dis-
tributed in one of 3 ways.

H, N R, a set ofp? isolated vertices.
Hs N R, ap-matching andp? — 2p isolated vertices.

Dy

{ Hi; N R, a set ofp disjoint paths and no isolated vertices.

Dy : H, N R, a set ofp? isolated vertices.

Hi; N R, a set ofp disjoint paths and 2 isolated vertices.
Hs N R, a (p + 2)-matching ang? — 2(p + 2) isolated vertices.

D3 = H, N R, a set ofp? isolated vertices.

Hy N R, a set ofp + 2 disjoint paths and 0 isolated vertices.
Hs N R, a (p + 2)-matching ang? — 2(p + 2) isolated vertices.

The existence of the Hamilton decompositionofuaranteed by Theorem 1.3 need not yield a decompositidn wit

the above desired distribution Bfedges. To begin we start with the edge partition
Hi =R Hj=Cav(Z5(&}"),  Hj=Cav(Z5; (&)%)
An example wherp = 7 is given in Figure 3. Le€ be the cycle defined by the lengtp alternating’,—&, sequence
(W1, Wo, ..., Wop) = (F, —&,F, -6, ...,T, —6&)

and the vertex (M). That is _
J
C=|(00)+ > w:j=012...2p-1|.
i=1
This is a cycle becaustandé; are linearly independent. The edgesXoélternate between edgestdf andH;. The

r-edges ofC join the cycles oH and theg;-edges ofC join the cycles oH]. Thus the symmetric ffierencesd; A C
andHj A C are Hamilton cycles. See Figure 4. It is noffidiult to see that thé-edges used in the cyceare

S = {(ka. —k(1-h)). (ka, 1 - k(1 - b))},

wherek =0,1,2,..., p— 1. There are two cases to consider.
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Figure 4: Symmetric dierence with the cycl€

Case 1b # 1: Settingx = kaandz = —(b — 1)"*awe find the&-edges used in the cycare:
S = {{(x ~21%). (x L~ 21X} : x € Zp]

If the edges, = {(X, y1), (X, ¥2)} € S, andy, = y; + 1 then we cali, thetop of sandy; thebottomof s; otherwise
y1 is the top and); is the bottom. LeFy, wherex € Zf, be the 4-cycle defined by the sequenge&, —&;, —&)
and the vertexthat isFy is the subgraph with edge set

E(Fx) = {{X X+ &1}, (X+ €1, X+ €1 + &)}, (X + &1 + &, X+ &}, (X + &, X}} .
Then focusing ors; = {(z —1), (z 0)} we define thezig-zagto be

7= F(z—l,O) + F(Ll) + F(z—l,Z) + F(Lg) + -4+ F(z—l,p—z) ?f [Z_l] ?S Odd;
F(Z+1,0) + F(Ll) + F(z+1,2) + F(Lg) + -4+ F(Z+1,p_2) if [Z_l] IS even,

where 1] is the unique integer such that® [z!] < pand '] = z* (mod p). It should be observed
thatS n E(Z) = 0. The zig-za¢Z is a length 4p — 1) closed trail with edges alternating betweehandH.
Thus applying Technique 1 we find that tdeedges o join the cycles oH/, and consequently the symmetric
differenceH’, A Z is a Hamilton cycle. Th&;-edges oZ span only the cycles dfi; that have first coordinate
amongz—1,zandz+1, thus these cycles are joined into a cycle of lengtindhe symmetric dierenceH;AZ .
The remaining vertices are in cycles of lengthAn example whem = 7 is given in Figure 5. Consequently the
symmetric diferencesd; A C andH, A Z are Hamilton cycles whereas; A (C + Z) may not be. See Figure 6.
We now show thaH} A (C + Z) is either a Hamilton cycle or consists of exactly two edggeiht cycles. The
3p-cycle of &- and&-edges formed by the symmetriciirenceH; A Z is broken into three paths when the
edgess; 1, ; ands;,; are removed by the symmetricfiirenceH; A (C + Z). These three paths @f- and
&-edges are

e atop ofs, ; to the top ofs; pathP;
e a bottom ofs,_; to the top ofs,,1 pathP;
e a bottom ofs;_; to the bottom ofs;,; pathP,

Eachr-edges inH} A (C + Z) is adjacent to exactly two edges 8) it is incident to one at the bottom end
and another at the top end. When traversing the cycle congpan r-edge{(x — a,y> — b), (X, y2)}, where
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x & {z— 1,z z+ 1} then it follows the path

(X Y2+ 1)(X%y2+2)- - (X, Y2+ K) - -- (X, y2 = 1)

and then exits on theedge{(x, y2—1), (x+a, y2— 1+a)}. Hence it enters at the top sf and leaves at the bottom
of s,. It follows that the cycles containing,, P, or P3 must join their top ends to bottom ends. Hence because
P; has two top end®?, has a top and bottom end aRd has two bottom ends, then we can only complete the

traversal of cycles by either

1. joining P; and P3 with intermediate edges into a cycle and simultaneoushjingiP; with intermediate
edges into a cycle, thus obtaining two cycles.

2. joining Py, P, P53 with intermediate edges into a single cycle .

In the second case as mentioned earlier the gkaphs been successfully decomposed into Hamilton cycles,

and the decomposition has distributibn. In the first case leK; andK; be the two cycles. Then because
vertices with first coordinate are joined by anr-edge to vertices with first a coordinater a, there must exist
without loss arx € Zp \ {z} where all of the edgei$x + a, i), (x+ a,i + 1)} are edges oK, except the edgsy.a
and an edg@(x, y), (X, y + 1)} in Ky where{(x+ a,y), (Xx+ &,y + 1)} # Sx;a- Let D be the 4-cycle

xyY)xy+1DX+ay+1l+b)(x+ay+hb)

The edges oD alternate betweeR; A C andK; + K, = H; A (C + Z). Also when the edges of the Hamilton
cycleH; AC are traversed, parallel edges are traversed in the sanatigireConsequently, applying Technique
2, we see thatl] A (C+ D) andH; A (C+Z + D) are Hamilton cycles. This decomposition will have disitibn
D> or D3 depending whether the edf(&. y), (x+ a,y + b)} is at the end of a path irHj A (C + D)) nRor in the
middle of such a path. See Figure 7.

Case 2,b = 1: Inthis case th&-edges used in the cycare:
S= {{(x, 0),(x,1)}: xe Zp}.
Similar to Case 1 we employ the zig-zag
Z=Fpo+Fay+Feoz+Fas+--+Fgop-2).

Only the 4-cycleF(0, 0) has non-empty intersection wi ThusF (0, 0) alternates edges betweldh A C and
H/, whereas the edges of the other 4-cycleZ miternate betweeR’ andH; A C. The&-edges of join the
cycles ofH} and thusH, = Hj A Z is a Hamilton cycle. Thus because paraéigledges ofH; A Z have the
same orientation it follows thats = H; A (Z - F(0, 0)) is a Hamilton cycle. Also the edgé®, 0), (0, 1)} and
{(1,0), (1, 1)} have the same orientationliy A C so it follows thatH; = H; A (C + F(0, 0)) is a Hamilton cycle.
This decomposition hag(1)-edge distributioi;. An example is provided in Figure 7.

We summarize with the following theorem:

Theorem 2.1 For every odd prime p and non-zero elements a andZyithe Cayley graph
Cav(Z3; {(a, b), (1,0), (0, 1)}*)

has a decomposition into Hamilton cycles, H,, Hz with (a, b)-edge distribution eitheb;, D, or Ds.

3 Proof of the Key Theorem

Consider the finite vector spate= Zj for some primep and positive integen. The automorphism group of is
GLn(p) the group ofn by n invertible matrices ofZp.
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If M € GLn(p), then it is easy to see the mappirg— Mx onV is a graph isomorphism froma&(V; S*) to
Cav(V; MS*). In particular if S is a linearly independent subset \¢f then the matrixM whose columns are the
elements oB is invertible and henc®l € GL,(p). It follows that Cuy(V; S*) is isomorphic Gy(V; (&, &, ..., &} ),
where{é,, &, ..., &,} is the standard basis fot. That is

& =1[0.0,....0,_1 ,0,....0]

~—
j-th

Itis not difficult to prove the following:

Lemma 3.1 If A and B are subsets of the finite dimensional vector spadeVatre orthogonal to each other, then
Cav(Sean (AU B); A* U B*) ~ Cav(Sean (A) ; A*)OCay(Sean (B) ; B¥)
An immediate consequence is Lemma 3.2 which appears in [2].

Lemma 3.2 (Alspach, Bryant, Dyer 2010)f S = {s1, %, ..., &} is a set of linearly independent vectors in V, then
the components of the Cayley grapkv(V; S*) are all isomorphic to the Cartesian product of t p-cycles.

It has an interesting Corollary which also appears in [2].

Corollary 3.3 (Alspach, Bryant, Dyer 2010)If S is a basis of V= Zj, then the Cayley grapRav(V; S*) has a
Hamilton decomposition.

Theorem 1.5 is our extension of this corollary and is key &0Shib-Paley graph Hamilton decomposition problem. Be-
fore proceeding to the proof of Theorem 1.5 we require soseudsion and technical lemmasxI£ (xq, Xz, . . ., Xn) €
Zy, then fork < n we denote byr(X) the projection ok on to the firsk coordinates. That is

m(X) = (X1, X, X, .- ., Xi) € ZK.

For ease of notation whea> ¢, we identify& with nx(&). Let Sy = {nx(F), &, &, ..., &}, wherer € ZB has no zero
entry, and set
Xy = CAY(Zk; Sk*),

fork =1,2,...,n. If His any subgraph oKy, we denote byg(H) the number of connected components-bf R,
whereRy = Cav(ZX; m(F)*). Two edges; = {X1, V1) and f, = {X, ¥} will be calledparallel edges inX if

fi+6& = (X1 +6&, V1 +6&} =T,

for somesey. A special Hamilton decompositiai Xy is a Hamilton decompositiodo, H1, Ho, . . ., Hk, wherecg(H;) <
p“— (i + 1)(p— 1), for alli. Theorem 2.1 provides a special Hamilton decompositiox,of
If His a subgraph oXy_;, then thdift of H is that subgraph of X, where

(0,9 € E(L) if and only if {r_1(), me1 (%)) € E(H).

Lemma 3.4 Xy has a special Hamilton decomposition, for albk2.

Proof. We proceed by induction ok If k = 2, then a special Hamilton decomposition is provided by Téen2.1.
So supposé& > 2. Then by inductiorXy_; has a special Hamilton-decompositidg, Hy, Ho, ..., Hk-1 . LetL; be the
liftof Hi,i =0,1,2,....,k—1. Then

Lo, L1, Lo, ..., Lk-1, G,

whereG = Cav(ZX; &) is an edge decomposition &f. BecauseéHo — R hascg(Ho) < P! — (p - 1) components, it
contains an acyclic subgra with at leastp — (p“* - (p- 1)) = (p - 1) edges.



Supposé < kand for 0< i < t we have chosen subgrapgBsof Hi —Rso thatE(S;)| = p—1 andSg+S1+So+- - -+
Si-1is acyclic. The number of components 6f & R¢)+So+S1+S2+- - +Si-1 > cg(Hr) = p1—(t+1)(p—1). Hence
we may choose froml;— (Rq¢+Sp+S1+S2+- - -+S;_1) a subgrapls; of p—1 edges such th&y+S;+So+- - -+ Si-1+ St
is acyclic.

The acyclic subgrap8p+S1+S,+- - -+ Sk_1 can be extended to a spanning treef CAY(Zk_l; {en, e, ...,68c1)%).
We finish the construction with the following two steps.

Step 1. If L; is not a Hamilton cycle we use the— 1 edges 0; to join its p cycles of lengthp*~! into a Hamilton
cycle and also to reduce the number of components in thet@rf@aas follows:

If C; andC, are two cycles irL; then the edge€; — R andC, — Ry are parallel. Thus, becauSeis a maximal
acyclic subgraph oH; — Ry, there exists a pair of parallel edgés= {X,Vi} € E(Ci), i = 1,2 such that the
nk,l(ﬂ) = nk,l(fZ) € S;. We letF be the 4-cycle;y1y2%1, and replace; with Lj A F andG with G A F. This
joins cyclesC; andC; of L; and joins the cycle iis containing the edggX;, X.} with the cycle containing the

edge{yi. ¥z}

Step 2. We now consider the edges of that are not used in Step 1. For each pair of disjoint cy€lesnd C,
remaining inG. The projectionsrk_1(C;1) andny_1(C,) identify two components of G{(Z"‘;l; (8n,....8.1)")
these two components are joined by a unique edgeX, ¥} in T and this edges cannot have been used in Step
1. Thus the edges of that project ontdf all belong to the same subgraph which is now a Hamilton cycle
by Step 1. There arp pairs of parallel edges that project orftoconsequently given an orientation of the cycle
L;j there must exist a pair of parallel edd&s ¥1} and{X, ¥»} such that¥s, y1) and X, ») agree with the cycles
orientation. We leF be the 4-cyclexiy1y2%;, and replace; with Lj A F andG with G A F. This keepd,

a Hamilton cycle and joins the the cycle Gcontaining the edgéxy, X} with the cycle containing the edge

{Y1. Y2}

Once all the edges df have been processed in Step 1 or Step 2. The gkajptas been decomposed into Hamilton
cycles. It remains to be shown that this decomposition igigheBut this is easy to see becauserhedges were
moved in Step 1 or Step 2. m|

3.1 The finale

Now consider any subs&c Zg, such thatS| = n + 1 andX = Cav(Z}; S*) is connected then following the opening
discussion to this section we may assume $at{r, &, &, ..., &}. Without loss we may also assume that

F=(rs,r2,...,,0,0,...,0),
R
n-k

wherer; # 0, fori = 1,2, ..., k. ThusS may be partitioned into subseis= {F, &1, &, ..., &} andB = {1, &2, ..., E}.
These subsets are orthogonal and we may therefore apply Aedriitmand consequently ~ X;0X;, whereX; =
Cav(Span (A) ; A*) and X, = Cav(Sean(B); B*) ~ Cav(Z¥K {er, e,...,en)*). If k > 2, thenX; has a Hamilton
decomposition by Theorem 1.5.Kf= 1, then it has a Hamilton decomposition by Theorem 1.2. A Htamdecom-
position of X, follows from Corollary 3.3. Thus applying Stong’s resulhélorem 1.1 a Hamilton decompositionXf
is obtained thus proving Theorem 1.5.

In the next section we give an application of this Key Thearem

4 Sub-Paley graphs

We are interested in a particular family of Cayley graphs telfn groups we call the Sub-Paley graphs.

LetF, denote the finite field of ordey. For evermdividing g— 1 let R@, m) be the unique multiplicative subgroup
of Fq \ {0} of orderm. We define the Sub-Paley graplgR) of orderg as the Cayley graph dfy, with connection set
R(g, m). Hence, the vertices of §(m) are labeled with the elements of the field and there is an gilgjag g andh if
and only ifg — h € R(g, m). The reason we insist dnto be even is because thgh) —1} is a subgroup of R, m) and



thus we have — h € R(g, m) if and only if h — g € R(g, m). Because multiplicative subgroups®&f \ {0} are cyclic,
R@ m) = {1,5%,4,...,p™} for someB € Fy. Let Ri(g,m) = {1,542 ...,™21}. Then eithey € Rn(q, m) or
—g € Ry(g, m), but not both. HenciR(g, m)| = m/2 and R(g, m)* = R(g, m).

Note that ifq = 1 (mod 4), then R{, (q — 1)/2) is the set of quadratic residues and,Rg§ — 1)/2) is thePaley
graphof orderg. In [2] all Paley graphs were shown to be Hamilton-decomplasa

Theorem 4.1 Let q= p", where p an odd prime and let ;n2n? be an even divisor of g 1. If the sub-Paley graph
X = Cav(Fqg; R(g, m)) is connected, then X is Hamilton-decomposable.

Proof. Let g(X) be the minimum polynomial fg8 overF, and letd = deg@(X)). Then
Ao = (LB .. B

considered as vectors oy is a maximal linear independent set in(R m). If the graphX is connected then{Rg, m)
must sparFy and therefore in this cask= n. Thus writingm/2 = tn + r, where 0< r < nwe partition R(g, m) into
the linearly independent sets

Ao, Ag, .. A

where _ o _
Ai — (ﬂd)IAO — {,Bdl,,BdHl, o ,’Bd|+d—l}’

i =0,12,....,t—1andA = {1, B2 . W2 Nowt = [Z—T]J > n > r Thus we may apply The Key

Theorem toA; U (™0, for j = 0,1,2,...,m/2 - tn — 1 decomposing & (Fp; (Aj U {B™1}) into Hamilton cycles,
forj =0,12...,m2-tn-1. We apply Theorem 3.3 to decomposer(p; A;) into Hamilton cycles fort =
m/2—-tn,m/2-tn+1,...,t. O

The result of Alspach, Bryant and Dyer on Paley graphs in §] loe obtained as a simple consequence of Theo-
rem4.1.

Corollary 4.2 (Alspach, Bryant, Dyer, 2010)All Paley graphs are Hamilton-decomposable.

Proof. If @ = p" = 1 (mod 4) , wherep is a prime anch a positive integer, then it is elementary to show that
(q-1)/2 > 2n?, except whem = 9. Applying Theorem 4.1 we obtain the result. ot 9 the Paley graph is 4 regular
and is Hamilton decomposable by Theorem 1.2. m|

Theorem 4.1 leaves open the sub-Paley grapksCay(Fq; R(q, m)), whereq is odd and 2 < m < 2n? or where
gis even.
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