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Abstract. Commutative semifields in odd characteristic can be equiva-
lently described by planar functions (also known as PN functions). We
describe a method to construct a semifield which is canonically associ-
ated to a planar function and use it to derive information on the nuclei
directly from the planar function. This is used to determine the nuclei of
families of new commutative semifields of dimensions 9 and 12 in arbi-
trary odd characteristic.
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1 Introduction

Until recently the only known families of commutative semifields in arbi-
trary odd characteristic aside of the fields themselves were the classical
constructions by Dickson [7] and Albert [1]. The first provably new such
general constructions were given in Zha-Kyureghyan-Wang [10] and [2].
The families constructed in Budaghyan-Helleseth [3] may be new as well
but this seems to remain unproved. The survey article of Kantor [8] gives
more background information and comments on the scarcity of known
commutative semifields in odd characteristic, in particular when the char-
acteristic is > 3.

Definition 1 A presemifield is a set F with two binary relations, ad-
dition and ∗, such that

– F is a commutative group with respect to addition.
– F ∗ is a loop under multiplication.
– 0 ∗ a = 0 for all a.

– The distributive law holds.

If moreover there is an element e ∈ F such that e ∗ x = x ∗ e = x for
all x we speak of a semifield.
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Definition 2 Let F = Fpr for an odd prime p. A function f : F −→ F is
perfectly nonlinear (PN), also called a planar function, if for each
0 6= a ∈ F the directional derivative δa defined as δa(x) = f(x+a)− f(x)
is bijective.

Let f : F −→ F and write it as a polynomial f(x) =
∑r−1

i=0 aix
i. Then

f is a Dembowski-Ostrom (DO-)polynomial if all its monomials have
p-weight ≤ 2 (the exponents are sums of two powers of p).

In odd characteristic planar DO-polynomials are equivalent with com-
mutative presemifields, see Coulter-Henderson [4]:

Theorem 1 The following concepts are equivalent:

– Commutative presemifields in odd characteristic.
– Dembowski-Ostrom polynomials which are PN functions.

The relation between those concepts is identical to the equivalence
between quadratic forms and bilinear forms in odd characteristic, with the
planar function in the role of the quadratic form. If ∗ is the presemifield
product, then the corresponding planar function is f(x) = x ∗ x. When
the planar function is given, the corresponding semifield product is

x ∗ y = (1/2){f(x + y)− f(x)− f(y)}.

One way to construct a semifield from a presemifield is the following:
choose 0 6= e ∈ F and define the new multiplication ◦ by

(x ∗ e) ◦ (y ∗ e) = x ∗ y.

Then ◦ describes a semifield with unit element e ∗ e.

Definition 3 Let F = Fr
p be the r-dimensional vector space over Fp.

Consider presemifields on F whose additions coincide with that of F. Two
such presemifield multiplications ∗ and ◦ on F are isotopic if there exist
α1, α2, β ∈ GL(r, p) such that

β(x ◦ y) = α1(x) ∗ α2(y)

always holds. They are strongly isotopic if we can choose α2 = α1.

This notion of equivalence is motivated by the fact that two presemi-
fields are isotopic if and only if the corresponding projective planes are
isomorphic. Let F = Fpr be the field of order pr. It is a commonly used
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method to replace a given commutative semifield of order pr by an iso-
topic copy which is defined on F and shares the additive structure and the
unit element 1 with F. The question is then to which degree the semifield
structure can be made to coincide with the field structure. As associativ-
ity is the only field axiom that a commutative semifield does not satisfy
it is natural that associativity will be in the center of interest.

Definition 4 Let F = Fpr and (F, ∗) a commutative semifield with unit
1 whose additive structure agrees with that of the field F. Define

S = {c ∈ F |c ∗ x = cx for all x ∈ F}.

M = {c ∈ F |(x ∗ c) ∗ y = x ∗ (c ∗ y) for all x, y ∈ F}.
K = {c ∈ F |c ∗ (x ∗ y) = (c ∗ x) ∗ y for all x, y ∈ F}.

Here the dimensions of the middle nucleus M and of the kernel or
left nucleus K of a commutative semifield are invariant under isotopy.
The dimension of S depends on the embedding of the semifield in the field
F. As mentioned in [5] we have K ⊆M (if a∗(x∗y) = (a∗x)∗y for all x, y,
then this also equals (a ∗ y) ∗ x = (y ∗ a) ∗ x = (x ∗ a) ∗ y = x ∗ (a ∗ y)). As
M is closed under semifield multiplication and is associative it is a field.
The semifield multiplication onM can therefore be made to coincide with
field multiplication. The same is true of the vector space structure of F
over its subfield M. It follows that we can find a suitable isotope such
that

K ⊆M ⊆ S.

Here are the constructions from [10] and [2]:

Theorem 2 Let p be an odd prime, q = ps, q′ = pt, F = Fq3 , s′ =
s/ gcd(s, t), t′ = t/ gcd(s, t), s′ odd. Let f : F −→ F be defined by

f(x) = x1+q′ − vxq2+q′q where ord(v) = q2 + q + 1.

Then f is a PN function in each of the following cases:

– s′ + t′ ≡ 0 (mod 3).
– q ≡ q′ ≡ 1 (mod 3)

Theorem 3 Let p be an odd prime, q = ps, q′ = pt,K = Fq ⊂ F = Fq4

such that 2s/ gcd(2s, t) is odd, q ≡ q′ ≡ 1 (mod 4). Let f : F −→ F be
defined by

f(x) = x1+q′ − vxq3+q′q where ord(v) = q3 + q2 + q + 1.

Then f is a PN function.
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The first family of Theorem 2 is constructed in [10], the second family
of Theorem 2 and Theorem 3 are from [2]. In the generic case the first
family of Theorem 2 is new as was shown in [10]. It was proved in [2] that
the semifields of order p4s isotopic to the special case t = 2, s > 1 odd of
Theorem 3 are not isotopic to Dickson or Albert semifields.

Let f(x) be a Dembowski-Ostrom polynomial which is a PN function
and ∗ the corresponding presemifield product (x ∗ y = (1/2){f(x + y) −
f(x)−f(y)}). In the following section we decribe a canonical construction
of a (commutative) semifield strongly isotopic to (F, ∗) which allows to
read off information on the nuclei directly from f(x). In the last section
we continue studying low-dimensional subfamilies of the planar functions
of Theorems 2,3. In particular we describe 12-dimensional semifields with
middle nucleus of dimension 2 and kernel Fp as well as a new family of
9-dimensional semifields all of whose nuclei agree with the prime field. In
the sequel p always denotes an odd prime.

2 From presemifields to semifields in odd characteristic

Definition 5 Let f(X) be a DO-polynomial defined on F = Fpr for odd
p. Let G = Gal(F |Fp) = {g0 = id, g1, . . . , gr−1} be the Galois group where
gi(x) = xpi

. Write

f(X) =
r−1∑
i=0

aigi(X2) +
∑
j<k

bjkgj(X)gk(X)

where ai, bjk ∈ F. If f(X) is also a planar function, then the presemifield
product defined by f(X) is

x ∗ y =
∑

i

aigi(xy) +
∑
j<k

(bjk/2)(gj(x)gk(y) + gk(x)gj(y))

Let ti(X) = Xpi −X.

Lemma 1 tmu(X) is a polynomial in tm(X).

Proof. Let Q = pm. Then tmu(X) = tm(X)Qu−1
+ tm(X)Qu−2

+ . . . +
tm(X) = g(u−1)m(tm(X)) + . . . + tm(X).

Proposition 1 Let p odd, F = Fpr and (F, ∗) a commutative presemi-
field. Let α ∈ GL(r, p) and define a product ◦ by

α(1) ∗ α(x ◦ y) = α(x) ∗ α(y).
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Then (F, ◦) is a commutative semifield with unit 1. It is strongly isotopic
to (F, ∗).

Proof. Obviously (F, ◦) is a commutative presemifield. It is related to
(F, ∗) by the strong isotopy β(x◦y) = α(x)∗α(y) where β(x) = α(1)∗α(x).
Choosing y = 1 shows α(1) ∗ α(x ◦ 1) = α(x) ∗ α(1). It follows x ◦ 1 = x.

In case α = id we obtain 1 ∗ (x ◦ y) = x ∗ y. This is made explicit in
the following definition and theorem.

Definition 6 Let F = Fpr for odd p and f(x) a planar DO-polynomial on
F. The associated semifield function is B(f(x)) where B ∈ GL(r, p)
is the inverse of A(x) = x ∗ 1. The associated semifield product is
the product ◦ defined by B(f(x)).

Theorem 4 Let f(X) =
∑r−1

i=0 aigi(X2)+
∑

j<k bjkgj(X)gk(X) be a pla-
nar function on F = Fpr for odd p, with presemifield product ∗ and associ-
ated semifield product ◦ (see Definition 6). Let m be the greatest common
divisor of r and the numbers k− j where j < k is such that bjk 6= 0. Then
Fpm ⊆M(F, ◦) ∩ S(F, ◦).

Proof. Let x ∗ y be the presemifield product defined by f(X). We have

A(x) = x ∗ 1 =
∑

aigi(x) +
∑
j<k

(bjk/2)(gj(x) + gk(x))

and

f(x) = A(x2) +
∑
j<k

(bjk/2)(2gj(x)gk(x)− gj(x2)− gk(x2)).

The expression in parenthesis is

2gj(x)gk(x)− gj(x2)− gk(x2) = −(gk(x)− gj(x))2 = −gj(tk−j(x)2).

This yields the associated semifield function

B(f(x)) = x2 −B(
∑
j<k

(bjk/2)gj(tk−j(x)2))

and the associated semifield product

x ◦ y = xy −B(
∑
j<k

(bjk/2)gj(tk−j(x)tk−j(y)).
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Observe that tmu(X) is a polynomial in tm(X) by Lemma 1. Let c ∈ Fpm .
Then c◦x = cx as tm(c) = 0. This shows Fpm ⊆ S(F, ◦). In order to show
Fpm ⊆ M(F, ◦) it remains to be shown (cx) ◦ y = x ◦ (cy) for all x, y.
This also follows directly from the fact that tk−j(cx) = ctk−j(x) for all
k, j such that bjk 6= 0.

Theorem 5 In the situation of Theorem 4 let l be the greatest common
divisor of r and the numbers i, j, k where ai 6= 0 and j < k such that
bjk 6= 0. Then the associated semifield has Fpl in its left nucleus.

Proof. Let c ∈ Fpl . We have to show (cx) ◦ y = c(x ∗ y). This follows from
the form of B(f(x)) as given in the proof of Theorem 4 and the fact that
A(x) and its inverse B(x) are linear over Fpl .

3 Some semifields are their nuclei

Theorem 6 The semifields of order p12 associated to the presemifields
in case s = 3, t = 2 of Theorem 3 have middle nucleus Fp2 and kernel Fp.

Proof. We have p ≡ 1 (mod 4), F = Fp12 and ord(v) = p9 + p6 + p3 + 1.
The planar function is

f(x) = x1+p2 − vxp5+p9
.

It follows from Theorem 4 that the middle nucleus M of the associated
semifield (F, ◦) has even dimension. It was shown in [2] that dim(M) is
not a multiple of 6. If dim(M) > 2, then dim(M) = 4. By a result of
Menichetti [9] the semifield would be Albert which is not the case as we
proved in [2]. It follows M = Fp2 . We have

x ◦ y = xy − (1/2)B(t2(x)t2(y)) + (1/2)B(vg5(t4(x)t4(y)))

(see the proof of Theorem 4) and t4(X) = t2(X)+g2(t2(X)). Let K(X, Y )
be the polynomial such that x ◦ y = xy + K(t2(x), t2(y)). Then

K(X, Y ) = −(1/2)B(XY − vg5((X + Xp2
)(Y + Y p2

)) =

= −(1/2)B(XY − v(XY )p5 − v(XY )p7 − vXp5
Y p7 − vXp7

Y p5
).

Assume dim(K) > 1. Then K = M = Fp2 . It has been proven in [5],
Theorem 4.2, that this is equivalent with K(X, Y ) being a polynomial in
Xp2

and Y p2
. Although we do not know B explicitly it is obvious that

this condition cannot be satisfied. In fact, let B(x) =
∑11

i=0 βigi(x). The
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absence of monomials Xpi
Y pi+2

for odd i shows β0 = β2 = . . . = β10 = 0.
As (XY )pi

is absent for odd i we have 0 = βi−gi−5(v)βi−5−gi−7(v)βi−7 =
βi. This yields the contradiction B ≡ 0.

We turn to Theorem 2. The smallest dimension for which new planar
functions may result is r = 9 for the second subfamily. Here t should
not be a multiple of 3 as otherwise a field or an Albert twisted field
is obtained. Up to obvious isotopy equivalences there are three cases,
f(x) = x1+p − vxp4+p6

, f(x) = x1+p − vxp3+p7
, f(x) = x1+p2 − vxp3+p8

.
We show that those yield new semifields all of whose nuclei agree with
the prime field:

Theorem 7 Let p ≡ 1 (mod 3), q = p3,K = Fq ⊂ F = Fp9 and ord(v) =
q2 + q + 1. The semifields of order p9 associated to the planar functions

f(x) = x1+p− vxp4+p6
, f(x) = x1+p− vxp3+p7

or f(x) = x1+p2 − vxp3+p8

have middle nucleus Fp and are not isotopic to a commutative Albert
semifield.

Proof. Assume the middle nucleus M of a corresponding semifield has
dimension > 1. Then the dimension is 3. By Menichetti [9] we are in
the Albert case. It suffices therefore to prove that our presemifield is
not isotopic to a commutative Albert presemifield. There are four cases
to consider. Corresponding presemifields are described by the monomial
planar functions X1+ps

where s ∈ {1, 2, 3, 4}. Here case s = 3 corre-
sponds to the uniquely determined Albert semifield with nucleus of di-
mension 3, the remaining values of s are representatives of the three
isotopism classes of commutative Albert presemifields whose correspond-
ing semifields have nucleus of dimension 1. Assume we have isotopy with
one of those commutative Albert presemifields. It follows from Coulter-
Henderson [4], Corollary 2.8 that there is a strong isotopy. There exist
invertible linear mappings

α(x) =
8∑

i=0

aigi(x), β(x) =
8∑

i=0

bigi(x)

such that
α(x)1+ps

= β(f(x)).

We complete the proof for the first type f(x). The proofs in the remaining
cases are analogous. Observe that in the exponents modular distances (in
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the circle of length 9) d = 0, d = 3, d = 4 do not occur. In the case of
distance d = 0 this yields aiai+s = 0 for all i. The equations for d = 3
and d = 4 are the following:

aigs(ai+3−s) + ai+3gs(ai−s) = 0.

aigs(ai+4−s) + ai+4gs(ai−s) = 0.

Without restriction a0 6= 0. It follows as = a−s = 0. Evaluating the
d = 3 equation for i ∈ {0,−3, s, s − 3} and the d = 4 equation for
i ∈ {0,−4, s, s− 4} shows ai = 0 for i ∈ ±{s, s− 3, s− 4, s+3, s+4}. For
s = 3 or s = 4 this yields the contradiction a0 = 0. For s = 1 or s = 2
the contradiction ai = 0 for all i 6= 0 is obtained.
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