REVIEW 2 KEY

1. A surface is given by equation $xyz + x + y + e^z = 2$. Find an equation of the tangent plane to the surface at point (2, -1, 0).

Answer: x+y-z-1=0.

2. Given $f(x,y)=e^{x^2+y^2}$, $x=u\sin v$, and $y=u\cos v$, use a chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$.

Answer: $2ue^{u^2}$ and 0.

3. Find all the second partial derivatives of the function $f(x,y) = \sqrt{x^2 - y^5}$.

Answer: $f_{xx} = -\frac{y^5}{(x^2 - y^5)^{3/2}}$, $f_{xy} = \frac{5xy^4}{2(x^2 - y^5)^{3/2}}$, $f_{yy} = \frac{5(3y^8 - 8x^2y^3)}{4(x^2 - y^5)^{3/2}}$.

4. Find all the critical points of the function $f(x,y) = xye^{x-2y}$ and classify them as local maxima, minima, saddle point(s), or none of these.

Answer: (0,0), a saddle point; $(-1,\frac{1}{2})$, a local minimum point.

5. Find the largest and smallest values of $2x^3 + 4y^2$ subject to the constraint $x^2 + 4y^2 \le 4$.

Answer: largest: 16, at (2,0); smallest: -16, at (-2,0).

6. Find the integral $\int_R (2y-x) dA$ over the region R on the xy-plane defined by the inequalities $0 \le x \le 1$ and $0 \le y \le 2 - x$.

Answer: 5/3.