REVIEW 2 KEY

1. A surface is given by equation $x y z+x+y+e^{z}=2$. Find an equation of the tangent plane to the surface at point $(2,-1,0)$.

Answer: $x+y-z-1=0$.
2. Given $f(x, y)=e^{x^{2}+y^{2}}, x=u \sin v$, and $y=u \cos v$, use a chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$.

Answer: $2 u e^{u^{2}}$ and 0 .
3. Find all the second partial derivatives of the function $f(x, y)=\sqrt{x^{2}-y^{5}}$.

Answer: $f_{x x}=-\frac{y^{5}}{\left(x^{2}-y^{5}\right)^{3 / 2}}, f_{x y}=\frac{5 x y^{4}}{2\left(x^{2}-y^{5}\right)^{3 / 2}}, f_{y y}=\frac{5\left(3 y^{8}-8 x^{2} y^{3}\right)}{4\left(x^{2}-y^{5}\right)^{3 / 2}}$.
4. Find all the critical points of the function $f(x, y)=x y e^{x-2 y}$ and classify them as local maxima, minima, saddle point(s), or none of these.

Answer: $(0,0)$, a saddle point; $\left(-1, \frac{1}{2}\right)$, a local minimum point.
5. Find the largest and smallest values of $2 x^{3}+4 y^{2}$ subject to the constraint $x^{2}+4 y^{2} \leqslant 4$.

Answer: largest: 16 , at $(2,0)$; smallest: -16 , at $(-2,0)$.
6. Find the integral $\int_{R}(2 y-x) d A$ over the region R on the $x y$-plane defined by the inequalities $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant 2-x$.

Answer: 5/3.

