REVIEW 2

- 1. A surface is given by equation $xyz + x + y + e^z = 2$. Find an equation
- of the tangent plane to the surface at point (2, -1, 0).

 2. Given $f(x, y) = e^{x^2 + y^2}$, $x = u \sin v$, and $y = u \cos v$, use a chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$.

 3. Find all the second partial derivatives of the function $f(x, y) = \sqrt{x^2 y^5}$.
- **4.** Find all the critical points of the function $f(x,y) = xye^{x-2y}$ and classify them as local maxima, minima, saddle point(s), or none of these.
- 5. Find the largest and smallest values of $2x^3+4y^2$ subject to the constraint $x^2+4y^2\leqslant 4$.
- **6.** Find the integral $\int_R (2y-x) \, dA$ over the region R on the xy-plane defined by the inequalities $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant 2-x$.