REVIEW FOR EXAM 1

REMEMMBER : YOU ' LL HAVE TO SHOW ALL WORK

1. Find the distances of the point $(2,3,-1)$ to
(a) the $x y$-plane
(b) the point (1, 4, -3)
2. Give an equation of the sphere of radius 2 centered at the point (1, $-2,3$).
3. Depict the plane whose equation is $y=2$.
4. Depict the surfaces whose equations are
(a) $z=y^{2}$
(b) $z=3-x-2 y$
5. Match the functions
(i) $z=2 x+y-1$; (ii) $z=\frac{1}{x^{2}+y^{2}} ;$ (iii) $z=1-e^{-\left(x^{2}+4 y^{2}\right)} ;$ (iv) $z=5-x^{2}$
with
(a) the cross - sections at $x=0,1,2$:

(b) the contour plots :

6. What is the linear function of x and y with value $z=2$ when $x=1$ and $y=-1$, slope 3 in the x direction and slope (-0.5) in the y direction?
7. Match the functions $f(x, y, z)=$
$x^{2}+y^{2}$ and $g(x, y, z)=x^{2}+y^{2}+z^{2}$ with the following families of level surfaces :

8. Given the function $f(x, y)=3 x^{2}-y^{3}$ and the point (1, 2),
(a) use difference quotients with $\Delta x=$
0.1 and $\Delta y=0.1$ to estimate t he partial derivatives $f_{x}(1,2)$ and $f_{y}(1,2)$
(b) find the same partial derivatives exactly
9. Given the function $f(x, y)=x e^{-2 y}$ and the point $(1,0)$,
(a) find the differential at this point
(b) write down the equation of the tangent
plane to the graph of the function at the given point
(c) compute the linear approximation to the value of the function at point (1.01, -0.02)
10. Given the function $f(x, y)=\ln \left(\frac{1}{x}-\sin y\right)$ and the point $(1,0)$,
(a) find the gradient at this point
(b) the directional derivative at this point in the direction of the vector $\vec{v}=2 \vec{i}+3 \vec{j}$
