FINAL REVIEW: KEY

1. Given the force field $\vec{F}=\vec{i}+2 \vec{j}-t \vec{k}$, find the work over the curve C given by the parametric equations

$$
\left\{\begin{array}{l}
x=3 \cos \sqrt{t} \\
y=3 \sin \sqrt{t} \\
z=4 \sqrt{t}
\end{array}\right.
$$

of a curve C, where $0 \leqslant t \leqslant \pi^{2}$.
Key:

$$
\begin{aligned}
W=\int 1 d x+2 d y-t d z=\int_{3}^{-3} d x & +\int_{0}^{0} 2 d y-\int_{0}^{\pi^{2}} t d(4 \sqrt{t}) \\
& =-6+0-\int_{0}^{\pi^{2}} t \frac{4}{2 \sqrt{t}} d t=-6-\frac{4}{3} \pi^{3}
\end{aligned}
$$

2. For each of the following force fields that are path-independent, find the corresponding potential function:
(a) $\vec{F}=-y \vec{i}+x \vec{j}$; (b) $\vec{F}=\left(x^{3}-3 x y^{2}, y^{3}-3 x^{2} y\right)$.

Key:
(a) $\vec{F}=P \vec{i}+Q \vec{j}$, where $P=-y$ and $Q=x$. One has

$$
\frac{\partial P}{\partial y}=-1, \quad \frac{\partial Q}{\partial x}=1 \neq \frac{\partial P}{\partial y}
$$

so that field \vec{F} is not path-independent.
(b) $\vec{F}=P \vec{i}+Q \vec{j}$, where $P=x^{3}-3 x y^{2}$ and $Q=y^{3}-3 x^{2} y$. One has

$$
\frac{\partial P}{\partial y}=-6 x y, \quad \frac{\partial Q}{\partial x}=-6 x y=\frac{\partial P}{\partial y}
$$

so that field \vec{F} is path-independent.
If $\vec{F}=\operatorname{grad} f$, then $f_{x}=x^{3}-3 x y^{2}$ and $f_{y}=y^{3}-3 x^{2} y$, so that the potential function is

$$
\begin{aligned}
f(x, y) & =\int f_{x} d x=\int\left(x^{3}-3 x y^{2}\right) d x=\frac{x^{4}}{4}-\frac{3 x^{2} y^{2}}{2}+g(y) \\
f_{y} & =-3 x^{2} y+g^{\prime}(y)=y^{3}-3 x^{2} y \\
g^{\prime}(y) & =y^{3} \\
g(y) & =\int y^{3} d y=\frac{y^{4}}{4}+C \\
f(x, y) & =\frac{x^{4}}{4}-\frac{3 x^{2} y^{2}}{2}+\frac{y^{4}}{4}+C=\frac{x^{4}-6 x^{2} y^{2}+y^{4}}{4}+C
\end{aligned}
$$

3. For each of the force fields in Problem 2 that are not path-independent, find the work done over the circle of radius 2 centered at point $(0,1)$. Do this in two ways: (i) using Green's theorem and (ii) without using it.

Key:
(i)

$$
\int_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{R}(1-(-1)) d A=2 \operatorname{Area}(R)=2 \times \pi 2^{2}=8 \pi
$$

(ii) Parametric eqs. are $x=2 \cos t$ and $y=1+2 \sin t, 0 \leqslant t \leqslant 2 \pi$.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C}-y d x+x d y & =\int_{0}^{2 \pi}-(1+2 \sin t)(-2 \sin t) d t+2 \cos t(2 \cos t) d t \\
& =\int_{0}^{2 \pi}(2 \sin t+4) d t=8 \pi
\end{aligned}
$$

4. Find the following fluxes:
(a) of the field $\vec{F}=x y z \vec{i}+x \vec{j}-y \vec{k}$ through the square of side 2 centered on the x-axis in plane $x=3$ and oriented in the negative x-direction;
(b) of the field $\vec{F}=-2 \vec{r}$ through the sphere of radius 5 centered at the origin and oriented outward.

Key:
(a) $\vec{n}=-\vec{i}$;

$$
\int_{S}(\vec{F} \cdot \vec{n}) d A=\int_{S}(-x y z) d A=-3 \int_{-1}^{1} \int_{-1}^{1} y z d y d z=0
$$

(b) $\vec{n}=\vec{r} /\|\vec{r}\|=\frac{1}{5} \vec{r}$;

$$
\begin{aligned}
\int_{S}(\vec{F} \cdot \vec{n}) d A & =\int_{S}\left(-2 \vec{r} \cdot\left(\frac{1}{5} \vec{r}\right)\right) d A \\
& =-\frac{2}{5} \int_{S} \vec{r} \cdot \vec{r} d A \\
& =-\frac{2}{5} \times 5^{2} \int_{S} d A=-\frac{2}{5} \times 5^{2} \operatorname{Area}(S)=-\frac{2}{5} \times 5^{2} 4 \pi \times 5^{2}=-1000 \pi
\end{aligned}
$$

5. Use the Divergence Theorem to find the flux of the vector field $\vec{F}=$ $\left(x^{3}, z, y\right)$ through the entire boundary surface (oriented outward) of the solid cylinder defined by the inequalities $x^{2}+y^{2} \leqslant 1$ and $-2 \leqslant z \leqslant 1$.
$\underline{\text { Key: }} \operatorname{div} \vec{F}=\frac{\partial\left(x^{3}\right)}{\partial x}+\frac{\partial z}{\partial y}+\frac{\partial y}{\partial z}=3 x^{2}+0+0=3 x^{2}$. So,

$$
\begin{aligned}
\int_{S}(\vec{F} \cdot \vec{n}) d A & =\int_{W} \operatorname{div} \vec{F} d V \\
& =\int_{W} 3 x^{2} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{-2}^{1} 3(r \cos \theta)^{2} r d z d r d \theta \\
& =3(1-(-2)) \int_{0}^{2 \pi} \int_{0}^{1}(r \cos \theta)^{2} r d r d \theta \\
& =9 \int_{0}^{2 \pi} \int_{0}^{1}(\cos \theta)^{2} r^{3} d r d \theta \\
& =\frac{9}{4} \int_{0}^{2 \pi}(\cos \theta)^{2} d \theta=\frac{9}{4} \int_{0}^{2 \pi} \frac{1}{2}(1+\cos 2 \theta) d \theta=\frac{9}{4} \frac{1}{2} 2 \pi=\frac{9}{4} \pi
\end{aligned}
$$

