FINAL REVIEW

Sections 16.5, 17.1-3, 18.1-4, 19.1

1. Given the force field $\vec{F}=\vec{i}+2 \vec{j}-t \vec{k}$, find the work over the curve C given by the parametric equations

$$
\left\{\begin{array}{l}
x=3 \cos \sqrt{t} \\
y=3 \sin \sqrt{t} \\
z=4 \sqrt{t}
\end{array}\right.
$$

of a curve C, where $0 \leqslant t \leqslant \pi^{2}$.
2. For each of the following force fields that are path-independent, find the corresponding potential function:
(a) $\vec{F}=-y \vec{i}+x \vec{j}$; (b) $\vec{F}=\left(x^{3}-3 x y^{2}, y^{3}-3 x^{2} y\right)$.
3. For each of the force fields in Problem 2 that are not path-independent, find the work done over the circle of radius 2 centered at point $(0,1)$, traced out clockwise. Do this in two ways: (i) using Green's theorem and (ii) without using it.
4. Find the following fluxes:
(a) of the field $\vec{F}=x y z \vec{i}+x \vec{j}-y \vec{k}$ through the square of side 2 centered on the x-axis in plane $x=3$ and oriented in the negative x-direction;
(b) of the field $\vec{F}=-2 \vec{r}$ through the sphere of radius 5 centered at the origin and oriented outward.
5. Use the Divergence Theorem to find the flux of the vector field $\vec{F}=$ $\left(x^{3}, z, y\right)$ through the entire boundary surface (oriented outward) of the solid cylinder defined by the inequalities $x^{2}+y^{2} \leqslant 1$ and $-2 \leqslant z \leqslant 1$.

