Test Help
A tour of some ideas

Warning: not certified as typo-free. If it looks like it must be a typo, it very well might be a typo. All typos are the responsibility of the Spook from Scary Movie. In several days, an updated and vastly extended version of this worksheet will be available at www.math.mtu.edu/~daolson.

1. Is there a copy of \mathbb{Z}_2, somewhat disguised, hiding inside \mathbb{Z}_{10}?

 (a) Fill out the group table, using $a = 0$ and $b = 1$ in \mathbb{Z}_2.

 $$
 \begin{array}{c|cc}
 + & a & b \\
 \hline
 a & & \\
 b & &
 \end{array}
 $$

 (b) Fill out the group table, using $a = 0$ and $b = 5$ in \mathbb{Z}_{10}.

 $$
 \begin{array}{c|cc}
 + & a & b \\
 \hline
 a & & \\
 b & &
 \end{array}
 $$

 (c) Make the (hopefully) obvious conclusion. If we want to use the map $\phi : \mathbb{Z}_2 \to \mathbb{Z}_{10}$ to show how \mathbb{Z}_2 is undercover in \mathbb{Z}_{10}, we would let $\phi(0) = 0$. What should $\phi(1)$ be?

 (d) Because we want ϕ to preserve group actions, we must have $\phi(0) = \phi(0 + 0) = \phi(0) + \phi(0)$. In your first high school algebra class, you probably learned how to solve $x = x + x$ for x. Is this situation any different?

2. Repeat: Is there a copy of \mathbb{Z}_3, somewhat disguised, hiding inside \mathbb{Z}_{12}?

 (a) Fill out the group table, using $a = 0$ and $b = 1$ in \mathbb{Z}_3 (c must be . . .).

 $$
 \begin{array}{c|ccc}
 + & a & b & c \\
 \hline
 a & & & \\
 b & & & \\
 c & & &
 \end{array}
 $$

 (b) Fill out the group table, using $a = 0$ and $b = 4$ in \mathbb{Z}_{12} (c must be . . .).

 $$
 \begin{array}{c|ccc}
 + & a & b & c \\
 \hline
 a & & & \\
 b & & & \\
 c & & &
 \end{array}
 $$

 (c) Make the (again, hopefully) obvious conclusion. If we want to use the map $\phi : \mathbb{Z}_3 \to \mathbb{Z}_{12}$ to show how \mathbb{Z}_3 is undercover in \mathbb{Z}_{12}, we would let $\phi(0) = 0$. What should $\phi(1)$ be?
(d) Because we want the map \(\phi \) to preserve group actions, we know that \(\phi(2) = \phi(1 + 1) = \phi(1) + \phi(1) \). Does this work?

(e) What if some twisted soul wanted to use \(\varphi(1) = 8 \). What must \(\varphi(2) \) be, if \(\varphi \) preserves the group action?

(f) Try to fill out the group table, using \(a = 0 \) and \(b = 8 \) in \(\mathbb{Z}_{12} \).

<table>
<thead>
<tr>
<th>+</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Take another look at Problem 1 from the test. Saying that \(\phi \) is an injective homomorphism is just saying that \(\mathbb{Z}_2 \) is hiding out, in disguise, in \(\mathbb{Z}_{1000} \). Phrased that way, is the answer now obvious?

4. Saying that \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_{1000} \) is a homomorphism just means that it preserves group actions: \(\phi(a + b) = \phi(a) + \phi(b) \). What does it mean for it to be injective?

5. Find a homomorphism \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_{1000} \) which is not injective. Hint: you don’t have many choices.

6. Is there a function \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_{1000} \) which is surjective? Give an example or (preferably) explain why it is impossible.

7. Suppose \(\phi : \mathbb{Z}_5 \rightarrow \mathbb{Z}_{10} \) is a homomorphism.

 (a) What must \(\phi(0) \) be? Can you recreate the argument given earlier in this worksheet, without peeking?

 (b) Assume that \(\phi(1) = 4 \). Calculate \(\phi(2) = \phi(1 + 1) = \phi(1) + \phi(1) \), and use a similar process to calculate \(\phi(3) \) and \(\phi(4) \).

 (c) Check whether \(\phi(1 + 3) = \phi(1) + \phi(3) \).

 (d) Check whether \(\phi(2 + 3) = \phi(2) + \phi(3) \).

 (e) Check whether \(\phi(4 + 3) = \phi(4) + \phi(3) \).

 (f) Obviously 1 generates \(\mathbb{Z}_5 \). Does 4 generate \(\mathbb{Z}_{10} \)? Does 4 generate a disguised copy of \(\mathbb{Z}_5 \) hiding in \(\mathbb{Z}_{10} \)?

 (g) Does 6 generate the disguised copy of \(\mathbb{Z}_5 \) hiding in \(\mathbb{Z}_{10} \)? What does that answer tell you about what would have happened if \(\phi(1) = 6 \)?

8. Gilligan says that a homomorphism \(\phi : \mathbb{Z}_{15} \rightarrow \mathbb{Z}_5 \), where \(\phi(1) = 1 \), is like a triple–layer chocolate cake. Would you agree? Is it surjective? Is it injective?

9. Suppose that \(H \) is a normal subgroup of a group \(G \). Let \(h_1 \in H \) and \(h_2 \in H \). What can you say about the product \(h_1 h_2 \) if \(h_1 \neq h_2 \)? Would it make any difference if they were the same element?

10. Suppose that \(H \) is a normal subgroup of a group \(G \). Suppose \(h \in H \). Could you say the same thing about \(h^2 \)? How about \(h^3 \)? And \(h^{67} \)? Could you prove that \(h^n \in H \) for any integer \(n \)? (Negative integers too!)
11. Let \(g \in G \), a group, and \(h \in H \), a normal subgroup. What can you say about \(ghg^{-1} \)? What about \(g^{-1}hg \)? As a misdirection question, can you say anything about \(hgh^{-1} \)?

12. Let \(g \in G \), a abelian group. Suppose \(h \in H \), a subgroup. Is the subgroup \(H \) abelian? Is it normal?

13. Let \(g \in G \), a group, and \(h_1 \in H \), a normal subgroup. Lunatic Larry says that elements in a normal subgroup “almost” commute, because \(gh_1 = h_2g \), where \(h_2 \in H \). Lunacy? Or freakishly correct?

14. Add \(1/5 \) and \(1/3 \). Would it make any difference if you added \(3/15 \) and \(5/15 \) instead?

15. Let \(k \) and \(l \) be integers. If you added \(k \cdot 1/5 + l \cdot 1/3 \), Could you always express the result as \(m/15 \), where \(m \) is some integer?

16. Can you put \(3/23, 34/42, 38/n \) over a common denominator? No matter how many times you added or subtracted those numbers, would you ever need a larger common denominator?